TY - JOUR A1 - Griebsch, Nora-Isabell A1 - Kern, Johanna A1 - Hansen, Jonas A1 - Rullmann, Michael A1 - Luthardt, Julia A1 - Helfmeyer, Stephanie A1 - Dekorsy, Franziska J. A1 - Soeder, Marvin A1 - Hankir, Mohammed K. A1 - Zientek, Franziska A1 - Becker, Georg-Alexander A1 - Patt, Marianne A1 - Meyer, Philipp M. A1 - Dietrich, Arne A1 - Blüher, Matthias A1 - Ding, Yu-Shin A1 - Hilbert, Anja A1 - Sabri, Osama A1 - Hesse, Swen T1 - Central serotonin/noradrenaline transporter availability and treatment success in patients with obesity JF - Brain Sciences N2 - Serotonin (5-hydroxytryptamine, 5-HT) as well as noradrenaline (NA) are key modulators of various fundamental brain functions including the control of appetite. While manipulations that alter brain serotoninergic signaling clearly affect body weight, studies implicating 5-HT transporters and NA transporters (5-HTT and NAT, respectively) as a main drug treatment target for human obesity have not been conclusive. The aim of this positron emission tomography (PET) study was to investigate how these central transporters are associated with changes of body weight after 6 months of dietary intervention or Roux-en-Y gastric bypass (RYGB) surgery in order to assess whether 5-HTT as well as NAT availability can predict weight loss and consequently treatment success. The study population consisted of two study cohorts using either the 5-HTT-selective radiotracer [\(^{11}\)C]DASB to measure 5-HTT availability or the NAT-selective radiotracer [\(^{11}\)C]MRB to assess NAT availability. Each group included non-obesity healthy participants, patients with severe obesity (body mass index, BMI, >35 kg/m\(^2\)) following a conservative dietary program (diet) and patients undergoing RYGB surgery within a 6-month follow-up. Overall, changes in BMI were not associated with changes of both 5-HTT and NAT availability, while 5-HTT availability in the dorsal raphe nucleus (DRN) prior to intervention was associated with substantial BMI reduction after RYGB surgery and inversely related with modest BMI reduction after diet. Taken together, the data of our study indicate that 5-HTT and NAT are involved in the pathomechanism of obesity and have the potential to serve as predictors of treatment outcomes. KW - obesity KW - serotonin KW - noradrenaline KW - serotonin transporter KW - noradrenaline transporter KW - Roux-en-Y gastric bypass surgery KW - body mass index (BMI; kg/m\(^2\)) KW - radiotracer KW - PET KW - PET imaging Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290294 SN - 2076-3425 VL - 12 IS - 11 ER - TY - JOUR A1 - Altieri, Barbara A1 - Di Dato, Carla A1 - Modica, Roberta A1 - Bottiglieri, Filomena A1 - Di Sarno, Antonella A1 - Pittaway, James F.H. A1 - Martini, Chiara A1 - Faggiano, Antongiulio A1 - Colao, Annamaria T1 - Bone metabolism and vitamin D implication in gastroenteropancreatic neuroendocrine tumors JF - Nutrients N2 - Patients affected by gastroenteropancreatic–neuroendocrine tumors (GEP–NETs) have an increased risk of developing osteopenia and osteoporosis, as several factors impact on bone metabolism in these patients. In fact, besides the direct effect of bone metastasis, bone health can be affected by hormone hypersecretion (including serotonin, cortisol, and parathyroid hormone-related protein), specific microRNAs, nutritional status (which in turn could be affected by medical and surgical treatments), and vitamin D deficiency. In patients with multiple endocrine neoplasia type 1 (MEN1), a hereditary syndrome associated with NET occurrence, bone damage may carry other consequences. Osteoporosis may negatively impact on the quality of life of these patients and can increment the cost of medical care since these patients usually live with their disease for a long time. However, recommendations suggesting screening to assess bone health in GEP–NET patients are missing. The aim of this review is to critically analyze evidence on the mechanisms that could have a potential impact on bone health in patients affected by GEP–NET, focusing on vitamin D and its role in GEP–NET, as well as on factors associated with MEN1 that could have an impact on bone homeostasis. KW - bone KW - vitamin D KW - neuroendocrine tumor KW - osteoporosis KW - mineral bone density KW - cortisol KW - serotonin KW - miRNA KW - MEN1 KW - therapy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203823 SN - 2072-6643 VL - 12 IS - 4 ER - TY - THES A1 - Forero Echeverry, Andrea Marcela T1 - Impact of Cadherin-13 deficiency on the brain serotonin system using mouse models and human iPSC-derived neurons T1 - Einfluss einer Cadherin-13 Defizienz auf das Serotonin-System des Gehirns unter Verwendung von Mausmodellen und humanen iPSC-abgeleiteten Neuronen N2 - Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter involved in early developmental processes such as cell proliferation, migration, and differentiation. Recent research in humans showed that the brain 5-HT system and CDH13 are interlinked in the genetics of neurodevelopmental disorders including attention- deficit/hyperactivity disorder and autism spectrum disorder (Lesch et al., 2008; Neale et al., 2008; Neale, Medland, Ripke, Anney, et al., 2010; Neale, Medland, Ripke, Asherson, et al., 2010; Sanders et al., 2011; Sanders et al., 2015; Zhou et al., 2008). This study introduces Cadherin-13 (CDH13), a cell adhesion protein, as a contributor to the development and function of the 5-HT system. Our experiments show that the absence of CDH13 increases the density of 5-HT neurons in the developing dorsal raphe (DR) and increases the 5-HT innervation of the prefrontal cortex in mouse embryonic stages. CDH13 is also observed in radial glial cells, an important progenitor cell type linked to neuronal migration. A three-dimensional reconstruction carried out with super-resolution microscopy, identifies 5-HT neurons intertwined with radial glial cells, and CDH13 clusters at contact points between these cells. This indicates a potential contribution of CDH13 to the migration of DR 5-HT neurons. As CDH13 is strongly expressed in 5-HT neurons, we asked whether the selective deletion of CDH13 from these cells is sufficient to generate the alterations observed in the Cdh13 constitutive knockout mouse line. In 5-HT conditional Cdh13 knockout mice (Cdh13 cKO) an increase in DR 5-HT neurons in the embryonic and adult brains is observed, as well as 5-HT hyperinnervation of cortical regions. Therefore, illustrating that the lack of CDH13 from 5-HT neurons alone impacts DR formation and serotonergic innervation. Behavioral testing conducted on Cdh13 cKO mice showed delayed learning in visuospatial learning and memory processing, as well as, changes in sociability parameters. To find out how CDH13 localizes in human 5-HT neurons, CDH13 was visualized in neurons that derived from human induced pluripotent stem cells (iPSC). Super-resolution microscopy confirmed CDH13 expression in a subgroup of induced human neurons positive for typical hallmarks of 5-HT neurons, such as expression of Tph2, the neuron-specific tryptophan hydroxylase, and synaptic structures. In summary, the work included in this thesis presents a detailed analysis of CDH13 expression and localization in the 5-HT system and shows that deletion of CDH13 from 5-HT neurons affects specific higher-order functions of the brain. N2 - Serotonin (5-Hydroxytryptamin, 5-HT) ist ein Neurotransmitter, der in frühe Entwicklungsprozesse involviert ist, wie beispielsweise Zellproliferation, Migration und Differenzierung. Aktuelle Forschungsergebnisse im Menschen zeigten eine Verbindung zwischen dem 5-HT System des Gehirns und CDH13 in der Genetik neurologischer Entwicklungsstörungen, wie die Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung und die Autismus-Spektrum-Störung (Lesch et al., 2008; Neale, Medland, Ripke, Anney, et al., 2010; Neale, Medland, Ripke, Asherson, et al., 2010; Sanders et al., 2011; Sanders et al., 2015; Zhou et al., 2008). Diese Studie präsentiert Cadherin-13 (CDH13), ein Zelladhäsionsprotein, als einen Gegenspieler in der Entwicklung und Funktion des 5-HT Systems. Unsere Experimente zeigen, dass die Abwesenheit von CDH13 die Dichte der 5-HT Neuronen in dem sich entwickelnden dorsalen Raphe (DR) sowie die 5-HT Innervation des Präfrontalen Kortex in den embryonalen Stadien der Maus steigert. CDH13 wird auch in Radialen Gliazellen beobachtet, ein wichtiger Vorläuferzelltyp, der mit neuronaler Migration in Verbindung gebracht wurde. Eine 3-dimensionale Rekonstruktion, durchgeführt mit Superresolutions-Mikroskopie, identifiziert 5-HT Neuronen verflochten mit Radialen Gliazellen und CDH13 in den Kontaktpunkten zwischen diesen Zellen. Dies verdeutlicht eine potenzielle Rolle von CDH13 bei der Migration der DR 5-HT Neuronen. Da CDH13 eine starke Expression in den 5-HT Neuronen aufweist, fragten wir uns, ob die selektive Deletion von CDH13 in den Zellen ausreichend sei, um die in der konstitutiven Cdh13 Knockout-Mauslinie beobachteten Veränderung zu erzeugen. In 5-HT konditionalen Cdh13 Knockout-Mäusen (Cdh13 cKO) wurde eine Erhöhung der Anzahl der DR 5-HT Neuronen im embryonalen und adulten Gehirn sowie eine 5-HT Überinnervation der kortikalen Regionen beobachtet. Dies veranschaulicht, dass bereits ein Mangel an CDH13 in 5-HT Neuronen die DR-Ausbildung und serotonerge Innervation beeinflusst. Verhaltensversuche, die an Cdh13 cKO-Mäusen durchgeführt wurden, zeigten verspätetes Lernen im visuell-räumlichen Spektrum und der Gedächtnisverarbeitung sowie Veränderungen der Soziabilitätsparameter. Um herauszufinden, wie CDH13 in humanen 5-HT Neuronen lokalisiert ist, wurde CDH13 in aus humanen pluripotenten Stammzellen (iPSC) erzeugten Neuronen visualisiert. Superresolutions-Mikroskopie bestätigte eine CDH13 Expression in einer Untergruppe induzierter humaner Neuronen, die typische Merkmale von 5-HT Neuronen, wie etwa die Expression der Neuronen-spezifischen Tryptophan-Hydroxylase Tph2 und synaptische Strukturen, aufweisen. Zusammengefasst präsentiert diese Doktorarbeit eine detaillierte Analyse der CDH13 Expression und Lokalisation im 5-HT System und zeigt, dass eine Deletion von CDH13 in 5-HT Neuronen spezifische höhergradige Funktionen des Gehirns beeinflusst. KW - neurodevelopment KW - cadherin-13 KW - serotonin Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216592 ER - TY - JOUR A1 - Weidner, Magdalena T. A1 - Lardenoije, Roy A1 - Eijssen, Lars A1 - Mogavero, Floriana A1 - De Groodt, Lilian P. M. T. A1 - Popp, Sandy A1 - Palme, Rupert A1 - Förstner, Konrad U. A1 - Strekalova, Tatyana A1 - Steinbusch, Harry W. M. A1 - Schmitt-Böhrer, Angelika G. A1 - Glennon, Jeffrey C. A1 - Waider, Jonas A1 - van den Hove, Daniel L. A. A1 - Lesch, Klaus-Peter T1 - Identification of cholecystokinin by genome-wide profiling as potential mediator of serotonin-dependent behavioral effects of maternal separation in the amygdala JF - Frontiers in Neuroscience N2 - Converging evidence suggests a role of serotonin (5-hydroxytryptamine, 5-HT) and tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme of 5-HT synthesis in the brain, in modulating long-term, neurobiological effects of early-life adversity. Here, we aimed at further elucidating the molecular mechanisms underlying this interaction, and its consequences for socio-emotional behaviors, with a focus on anxiety and social interaction. In this study, adult, male Tph2 null mutant (Tph2\(^{-/-}\)) and heterozygous (Tph2\(^{+/-}\)) mice, and their wildtype littermates (Tph2\(^{+/+}\)) were exposed to neonatal, maternal separation (MS) and screened for behavioral changes, followed by genome-wide RNA expression and DNA methylation profiling. In Tph2\(^{-/-}\) mice, brain 5-HT deficiency profoundly affected socio-emotional behaviors, i.e., decreased avoidance of the aversive open arms in the elevated plus-maze (EPM) as well as decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Tph2\(^{+/-}\) mice showed an ambiguous profile with context-dependent, behavioral responses. In the EPM they showed similar avoidance of the open arm but decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Notably, MS effects on behavior were subtle and depended on the Tph2 genotype, in particular increasing the observed avoidance of EPM open arms in wildtype and Tph2\(^{+/-}\) mice when compared to their Tph2\(^{-/-}\) littermates. On the genomic level, the interaction of Tph2 genotype with MS differentially affected the expression of numerous genes, of which a subset showed an overlap with DNA methylation profiles at corresponding loci. Remarkably, changes in methylation nearby and expression of the gene encoding cholecystokinin, which were inversely correlated to each other, were associated with variations in anxiety-related phenotypes. In conclusion, next to various behavioral alterations, we identified gene expression and DNA methylation profiles to be associated with TPH2 inactivation and its interaction with MS, suggesting a gene-by-environment interaction-dependent, modulatory function of brain 5-HT availability. KW - serotonin KW - maternal separation KW - mouse KW - emotional behavior KW - DNA methylation KW - RNA expression Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201340 VL - 13 ER - TY - JOUR A1 - Ferero, Andrea A1 - Rivero, Olga A1 - Wäldchen, Sina A1 - Ku, Hsing-Ping A1 - Kiser, Dominik P. A1 - Gärtner, Yvonne A1 - Pennington, Laura S. A1 - Waider, Jonas A1 - Gaspar, Patricia A1 - Jansch, Charline A1 - Edenhofer, Frank A1 - Resink, Thérèse J. A1 - Blum, Robert A1 - Sauer, Markus A1 - Lesch, Klaus-Peter T1 - Cadherin-13 Deficiency Increases Dorsal Raphe 5-HT Neuron Density and Prefrontal Cortex Innervation in the Mouse Brain JF - Frontiers in Cellular Neuroscience N2 - Background: During early prenatal stages of brain development, serotonin (5-HT)-specific neurons migrate through somal translocation to form the raphe nuclei and subsequently begin to project to their target regions. The rostral cluster of cells, comprising the median and dorsal raphe (DR), innervates anterior regions of the brain, including the prefrontal cortex. Differential analysis of the mouse 5-HT system transcriptome identified enrichment of cell adhesion molecules in 5-HT neurons of the DR. One of these molecules, cadherin-13 (Cdh13) has been shown to play a role in cell migration, axon pathfinding, and synaptogenesis. This study aimed to investigate the contribution of Cdh13 to the development of the murine brain 5-HT system. Methods: For detection of Cdh13 and components of the 5-HT system at different embryonic developmental stages of the mouse brain, we employed immunofluorescence protocols and imaging techniques, including epifluorescence, confocal and structured illumination microscopy. The consequence of CDH13 loss-of-function mutations on brain 5-HT system development was explored in a mouse model of Cdh13 deficiency. Results: Our data show that in murine embryonic brain Cdh13 is strongly expressed on 5-HT specific neurons of the DR and in radial glial cells (RGCs), which are critically involved in regulation of neuronal migration. We observed that 5-HT neurons are intertwined with these RGCs, suggesting that these neurons undergo RGC-guided migration. Cdh13 is present at points of intersection between these two cell types. Compared to wildtype controls, Cdh13-deficient mice display increased cell densities in the DR at embryonic stages E13.5, E17.5, and adulthood, and higher serotonergic innervation of the prefrontal cortex at E17.5. Conclusion: Our findings provide evidence for a role of CDH13 in the development of the serotonergic system in early embryonic stages. Specifically, we indicate that Cdh13 deficiency affects the cell density of the developing DR and the posterior innervation of the prefrontal cortex (PFC), and therefore might be involved in the migration, axonal outgrowth and terminal target finding of DR 5-HT neurons. Dysregulation of CDH13 expression may thus contribute to alterations in this system of neurotransmission, impacting cognitive function, which is frequently impaired in neurodevelopmental disorders including attention-deficit/hyperactivity and autism spectrum disorders. KW - serotonin KW - cadherin-13 (CDH13) KW - T-cadherin KW - neurodevelopment KW - psychiatric disorders KW - radial glia KW - dorsal raphe KW - prefrontal cortex Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170313 VL - 11 IS - 307 ER - TY - JOUR A1 - Waider, J A1 - Popp, S A1 - Lange, MD A1 - Kern, R A1 - Kolter, JF A1 - Kobler, J A1 - Donner, NC A1 - Lowe, KR A1 - Malzbender, JH A1 - Brazell, CJ A1 - Arnold, MR A1 - Aboagye, B A1 - Schmitt-Böhrer, A A1 - Lowry, CA A1 - Pape, HC A1 - Lesch, KP T1 - Genetically driven brain serotonin deficiency facilitates panic-like escape behavior in mice JF - Translational Psychiatry N2 - Multiple lines of evidence implicate brain serotonin (5-hydroxytryptamine; 5-HT) system dysfunction in the pathophysiology of stressor-related and anxiety disorders. Here we investigate the influence of constitutively deficient 5-HT synthesis on stressor-related anxiety-like behaviors using Tryptophan hydroxylase 2 (Tph2) mutant mice. Functional assessment of c-Fos after associated foot shock, electrophysiological recordings of GABAergic synaptic transmission, differential expression of the Slc6a4 gene in serotonergic neurons were combined with locomotor and anxiety-like measurements in different contextual settings. Our findings indicate that constitutive Tph2 inactivation and consequential lack of 5-HT synthesis in Tph2 null mutant mice (Tph2\(^{-/-}\)) results in increased freezing to associated foot shock and a differential c-Fos activity pattern in the basolateral complex of the amygdala. This is accompanied by altered GABAergic transmission as observed by recordings of inhibitory postsynaptic currents on principal neurons in the basolateral nucleus, which may explain increased fear associated with hyperlocomotion and escape-like responses in aversive inescapable contexts. In contrast, lifelong 5-HT deficiency as observed in Tph2 heterozygous mice (Tph\(^{+/-}\)) is able to be compensated through reduced GABAergic transmission in the basolateral nucleus of the amygdala based on Slc6a4 mRNA upregulation in subdivisions of dorsal raphe neurons. This results in increased activity of the basolateral nucleus of the amygdala due to associated foot shock. In conclusion, our results reflect characteristic syndromal dimensions of panic disorder and agoraphobia. Thus, constitutive lack of 5-HT synthesis influence the risk for anxiety- and stressor-related disorders including panic disorder and comorbid agoraphobia through the absence of GABAergic-dependent compensatory mechanisms in the basolateral nucleus of the amygdala. KW - anxiety KW - stress KW - serotonin KW - genetics KW - mice Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170239 VL - 7 IS - e1246 ER - TY - JOUR A1 - Song, Ning-Ning A1 - Jia, Yun-Fang A1 - Zhang, Lei A1 - Zhang, Qiong A1 - Huang, Ying A1 - Liu, Xiao-Zhen A1 - Hu, Ling A1 - Lan, Wei A1 - Chen, Ling A1 - Lesch, Klaus-Peter A1 - Chen, Xiaoyan A1 - Xu, Lin A1 - Ding, Yu-Qiang T1 - Reducing central serotonin in adulthood promotes hippocampal neurogenesis JF - Scientific Reports N2 - Chronic administration of selective serotonin reuptake inhibitors (SSRIs), which up-regulates central serotonin (5-HT) system function, enhances adult hippocampal neurogenesis. However, the relationship between central 5-HT system and adult neurogenesis has not fully been understood. Here, we report that lowering 5-HT level in adulthood is also able to enhance adult hippocampal neurogenesis. We used tamoxifen (TM)-induced Cre in Pet1-CreER\(^{T2}\) mice to either deplete central serotonergic (5-HTergic) neurons or inactivate 5-HT synthesis in adulthood and explore the role of central 5-HT in adult hippocampal neurogenesis. A dramatic increase in hippocampal neurogenesis is present in these two central 5-HT-deficient mice and it is largely prevented by administration of agonist for 5-HTR2c receptor. In addition, the survival of new-born neurons in the hippocampus is enhanced. Furthermore, the adult 5-HT-deficient mice showed reduced depression-like behaviors but enhanced contextual fear memory. These findings demonstrate that lowering central 5-HT function in adulthood can also enhance adult hippocampal neurogenesis, thus revealing a new aspect of central 5-HT in regulating adult neurogenesis. KW - serotonin KW - SSRI KW - hippocampal neurogenesis KW - adulthood Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168004 VL - 6 IS - 20338 ER - TY - JOUR A1 - Wolf, Karen A1 - Braun, Attila A1 - Haining, Elizabeth J. A1 - Tseng, Yu-Lun A1 - Kraft, Peter A1 - Schuhmann, Michael K. A1 - Gotru, Sanjeev K. A1 - Chen, Wenchun A1 - Hermanns, Heike M. A1 - Stoll, Guido A1 - Lesch, Klaus-Peter A1 - Nieswandt, Bernhard T1 - Partially Defective Store Operated Calcium Entry and Hem(ITAM) Signaling in Platelets of Serotonin Transporter Deficient Mice JF - PLoS One N2 - Background Serotonin (5-hydroxytryptamin, 5-HT) is an indolamine platelet agonist, biochemically derived from tryptophan. 5-HT is secreted from the enterochromaffin cells into the gastrointestinal tract and blood. Blood 5-HT has been proposed to regulate hemostasis by acting as a vasoconstrictor and by triggering platelet signaling through 5-HT receptor 2A (5HTR2A). Although platelets do not synthetize 5-HT, they take 5-HT up from the blood and store it in their dense granules which are secreted upon platelet activation. Objective To identify the molecular composite of the 5-HT uptake system in platelets and elucidate the role of platelet released 5-HT in thrombosis and ischemic stroke. Methods: 5-HT transporter knockout mice (5Htt\(^{-/-}\)) were analyzed in different in vitro and in vivo assays and in a model of ischemic stroke. Results In 5Htt\(^{-/-}\) platelets, 5-HT uptake from the blood was completely abolished and agonist-induced Ca2+ influx through store operated Ca\(^{2+}\) entry (SOCE), integrin activation, degranulation and aggregation responses to glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2) were reduced. These observed in vitro defects in 5Htt\(^{-/-}\) platelets could be normalized by the addition of exogenous 5-HT. Moreover, reduced 5-HT levels in the plasma, an increased bleeding time and the formation of unstable thrombi were observed ex vivo under flow and in vivo in the abdominal aorta and carotid artery of 5Htt\(^{-/-}\) mice. Surprisingly, in the transient middle cerebral artery occlusion (tMCAO) model of ischemic stroke 5Htt\(^{-/-}\) mice showed nearly normal infarct volume and the neurological outcome was comparable to control mice. Conclusion Although secreted platelet 5-HT does not appear to play a crucial role in the development of reperfusion injury after stroke, it is essential to amplify the second phase of platelet activation through SOCE and plays an important role in thrombus stabilization. KW - platelets KW - serotonin KW - integrins KW - blood flow KW - collagens KW - platelet activation KW - platelet aggregation KW - ischemic stroke Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146399 VL - 11 IS - 1 ER - TY - JOUR A1 - Aso, Yoshinori A1 - Herb, Andrea A1 - Ogueta, Maite A1 - Siwanowicz, Igor A1 - Templier, Thomas A1 - Friedrich, Anja B. A1 - Ito, Kei A1 - Scholz, Henrike A1 - Tanimoto, Hiromu T1 - Three Dopamine Pathways Induce Aversive Odor Memories with Different Stability JF - PLoS Genetics N2 - Animals acquire predictive values of sensory stimuli through reinforcement. In the brain of Drosophila melanogaster, activation of two types of dopamine neurons in the PAM and PPL1 clusters has been shown to induce aversive odor memory. Here, we identified the third cell type and characterized aversive memories induced by these dopamine neurons. These three dopamine pathways all project to the mushroom body but terminate in the spatially segregated subdomains. To understand the functional difference of these dopamine pathways in electric shock reinforcement, we blocked each one of them during memory acquisition. We found that all three pathways partially contribute to electric shock memory. Notably, the memories mediated by these neurons differed in temporal stability. Furthermore, combinatorial activation of two of these pathways revealed significant interaction of individual memory components rather than their simple summation. These results cast light on a cellular mechanism by which a noxious event induces different dopamine signals to a single brain structure to synthesize an aversive memory. KW - dynamics KW - serotonin KW - expression KW - melanogaster KW - neurons form KW - olfactory memory KW - long-term-memory KW - drosophila mushroom body KW - sensitization KW - localization Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130631 VL - 8 IS - 7 ER - TY - JOUR A1 - Kohl, S. A1 - Gruendler, T. O. J. A1 - Huys, D. A1 - Sildatke, E. A1 - Dembek, T. A. A1 - Hellmich, M. A1 - Vorderwulbecke, M. A1 - Timmermann, L. A1 - Ahmari, S. E. A1 - Klosterkoetter, J. A1 - Jessen, F. A1 - Sturm, V. A1 - Visser-Vandewalle, V. A1 - Kuhn, J. T1 - Effects of deep brain stimulation on prepulse inhibition in obsessive-compulsive disorder JF - Translational Psychiatry N2 - Owing to a high response rate, deep brain stimulation (DBS) of the ventral striatal area has been approved for treatment-refractory obsessive-compulsive disorder (tr-OCD). Many basic issues regarding DBS for tr-OCD are still not understood, in particular, the mechanisms of action and the origin of side effects. We measured prepulse inhibition (PPI) in treatment-refractory OCD patients undergoing DBS of the nucleus accumbens (NAcc) and matched controls. As PPI has been used in animal DBS studies, it is highly suitable for translational research. Eight patients receiving DBS, eight patients with pharmacological treatment and eight age-matched healthy controls participated in our study. PPI was measured twice in the DBS group: one session with the stimulator switched on and one session with the stimulator switched off. OCD patients in the pharmacologic group took part in a single session. Controls were tested twice, to ensure stability of data. Statistical analysis revealed significant differences between controls and (1) patients with pharmacological treatment and (2) OCD DBS patients when the stimulation was switched off. Switching the stimulator on led to an increase in PPI at a stimulus-onset asynchrony of 200 ms. There was no significant difference in PPI between OCD patients being stimulated and the control group. This study shows that NAcc-DBS leads to an increase in PPI in tr-OCD patients towards a level seen in healthy controls. Assuming that PPI impairments partially reflect the neurobiological substrates of OCD, our results show that DBS of the NAcc may improve sensorimotor gating via correction of dysfunctional neural substrates. Bearing in mind that PPI is based on a complex and multilayered network, our data confirm that DBS most likely takes effect via network modulation. KW - nucleus KW - serotonin KW - schizophrenia KW - dopamine KW - double-blind KW - psychiatric disorders KW - in vivo KW - acoustic startle KW - reflex KW - modulation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138300 VL - 5 IS - e675 ER -