TY - THES A1 - Bertolucci, Franco T1 - Operant and classical learning in Drosophila melanogaster: the ignorant gene (ign) T1 - Operantes und klassisches Lernen in Drosophila melanogaster: das ignorant Gen (ign) N2 - One of the major challenges in neuroscience is to understand the neuronal processes that underlie learning and memory. For example, what biochemical pathways underlie the coincidence detection between stimuli during classical conditioning, or between an action and its consequences during operant conditioning? In which neural substructures is this information stored? How similar are the pathways mediating these two types of associative learning and at which level do they diverge? The fly Drosophila melanogaster is an appropriate model organism to address these questions due to the availability of suitable learning paradigms and neurogenetic tools. It permits an extensive study of the functional role of the gene S6KII which in Drosophila had been found to be differentially involved in classical and operant conditioning (Bertolucci, 2002; Putz et al., 2004). Genomic rescue experiments showed that olfactory conditioning in the Tully machine, a paradigm for Pavlovian olfactory conditioning, depends on the presence of an intact S6KII gene. This rescue was successfully performed on both the null mutant and a partial deletion, suggesting that the removal of the phosphorylating unit of the kinase was the main cause of the functional defect. The GAL4/UAS system was used to achieve temporal and spatial control of S6KII expression. It was shown that expression of the kinase during the adult stage was essential for the rescue. This finding ruled out a developmental origin of the mutant learning phenotype. Furthermore, targeted spatial rescue of S6KII revealed a requirement in the mushroom bodies and excluded other brain structures like the median bundle, the antennal lobes and the central complex. This pattern is very similar to the one previously identified with the rutabaga mutant (Zars et al., 2000). Experiments with the double mutant rut, ign58-1 suggest that both rutabaga and S6KII operate in the same signalling pathway. Previous studies had already shown that deviating results from operant and classical conditioning point to different roles for S6KII in the two types of learning (Bertolucci, 2002; Putz, 2002). This conclusion was further strengthened by the defective performance of the transgenic lines in place learning and their normal behavior in olfactory conditioning. A novel type of learning experiment, called “idle experiment”, was designed. It is based on the conditioning of the walking activity and represents a purely operant task, overcoming some of the limitations of the “standard” heat-box experiment, a place learning paradigm. The novel nature of the idle experiment allowed exploring “learned helplessness” in flies, unveiling astonishing similarities to more complex organisms such as rats, mice and humans. Learned helplessness in Drosophila is found only in females and is sensitive to antidepressants. N2 - Eine der größten Herausforderungen in der Neurobiologie ist es, die neuronalen Prozesse zu verstehen, die Lernen und Gedächtnis zugrundeliegen. Welche biochemischen Pfade liegen z.B. der Koinzidenzdetektion von Reizen (klassische Konditionierung) oder einer Handlung und ihren Konsequenzen (operante Konditionierung) zugrunde? In welchen neuronalen Unterstrukturen werden diese Informationen gespeichert? Wie ähnlich sind die Stoffwechselwege, die diese beiden Arten des assoziativen Lernens vermitteln und auf welchem Niveau divergieren sie? Drosophila melanogaster ist wegen der Verfügbarkeit von Lern-Paradigmen und neurogenetischen Werkzeugen ein geeigneter Modell-Organismus, zum diese Fragen zu adressieren. Er ermöglicht eine umfangreiche Studie der Funktion des Gens S6KII, das in der Taufliege in klassischer und operanter Konditionierung unterschiedlich involviert ist (Bertolucci, 2002; Putz et al., 2004). Rettungsexperimenten zeigen, dass die olfaktorische Konditionierung in der Tully Maschine (ein klassisches, Pawlow’sches Konditionierungsparadigma) von dem Vorhandensein eines intakten S6KII Gens abhängt. Die Rettung war sowohl mit einer vollständigen, als auch einer partiellen Deletion erfolgreich und dies zeigt, dass der Verlust der phosphorylierenden Untereinheit der Kinase die Hauptursache des Funktionsdefektes war. Das GAL4/UAS System wurde benutzt, um die S6KII Expression zeitlich und räumlich zu steuern. Es wurde gezeigt, dass die Expression der Kinase während des adulten Stadiums für die Rettung hinreichend war. Dieser Befund schließt eine Entwicklungsstörung als Ursache für den mutanten Phänotyp aus. Außerdem zeigte die gezielte räumliche Rettung von S6KII die Notwendigkeit der Pilzkörper und schloss Strukturen wie das mediane Bündel, die Antennalloben und den Zentralkomplex aus. Dieses Muster ist dem vorher mit der rutabaga Mutation identifizierten sehr ähnlich (Zars et al., 2000). Experimente mit der Doppelmutante rut, ign58-1 deuten an, dass rutabaga und S6KII im gleichen Signalweg aktiv sind. Vorhergehende Studien hatten bereits gezeigt, dass die unterschiedlichen Ergebnisse bei operanter und klassischer Konditionierung auf verschiedenen Rollen für S6KII in den zwei Arten des Lernens hindeuten (Bertolucci, 2002; Putz, 2002). Diese Schlussfolgerung wurde durch den mutanten Phänotyp der transgenen Linien in der Positionskonditionierung und ihr wildtypisches Verhalten in der klassischen Konditionierung zusätzlich bekräftigt. Eine neue Art von Lern-Experiment, genannt „Idle Experiment“, wurde entworfen. Es basiert auf der Konditionierung der Laufaktivität, stellt eine operante Aufgabenstellung dar und überwindet einige der Limitationen des „Standard“ Heat-Box Experimentes. Die neue Art des Idle Experimentes erlaubt es, „gelernte Hilflosigkeit“ in Fliegen zu erforschen, dabei zeigte sich eine erstaunliche Ähnlichkeit zu den Vorgängen in komplizierteren Organismen wie Ratten, Mäusen oder Menschen. Gelernte Hilflosigkeit in der Taufliege wurde nur in den Weibchen beobachtet und wird von Antidepressiva beeinflusst. KW - Klassische Konditionierung KW - Instrumentelle Konditionierung KW - Konditionierung KW - Operante Konditionierung KW - Lernen KW - Räumliches Gedächtnis KW - Assoziatives Gedächtnis KW - Gedächtnis KW - MAP-Kinase KW - Drosophila KW - Taufliege KW - Gelernte Hilflosigkeit KW - CREB KW - S6KII KW - p90RSK KW - RSK KW - p90 ribosomal S6 kinase KW - ribosomal S6 kinase II KW - operant conditioning KW - classical conditioning KW - associative learning KW - learned helplessness Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-33984 ER - TY - THES A1 - Yarali, Ayse T1 - Aspects of predictive learning in the fruit fly T1 - Aspekte des assoziatives Lernens bei Taufliegen N2 - Past experience contributes to behavioural organization mainly via learning: Animals learn otherwise ordinary cues as predictors for biologically significant events. This thesis studies such predictive, associative learning, using the fruit fly Drosophila melanogaster. I ask two main questions, which complement each other: One deals with the processing of those cues that are to be learned as predictors for an important event; the other one deals with the processing of the important event itself, which is to be predicted. Do fruit flies learn about combinations of olfactory and visual cues? I probe larval as well as adult fruit flies for the learning about combinations of olfactory and visual cues, using a so called ‘biconditional discrimination’ task: During training, one odour is paired with reinforcement only in light, but not in darkness; the other odour in turn is reinforced only in darkness, but not in light. Thus, neither the odours nor the visual conditions alone predict reinforcement, only combinations of both do. I find no evidence that either larval or adult fruit flies were to solve such task, speaking against a cross-talk between olfactory and visual modalities. Previous studies however suggest such cross-talk. To reconcile these results, I suggest classifying different kinds of interaction between sensory modalities, according to their site along the sensory-motor continuum: I consider an interaction ‘truly’ cross-modal, if it is between the specific features of the stimuli. I consider an interaction ’amodal’ if it instead engages the behavioural tendencies or ‘values’ elicited by each stimulus. Such reasoning brings me to conclude that different behavioural tasks require different kinds of interaction between sensory modalities; whether a given kind of interaction will be found depends on the neuronal infrastructure, which is a function of the species and the developmental stage. Predictive learning of pain-relief in fruit flies Fruit flies build two opposing kinds of memory, based on an experience with electric shock: Those odours that precede shock during training are learned as predictors for punishment and are subsequently avoided; those odours that follow shock during training on the other hand are learned as signals for relief and are subsequently approached. I focus on such relief learning. I start with a detailed parametric analysis of relief learning, testing for reproducibility as well as effects of gender, repetition of training, odour identity, odour concentration and shock intensity. I also characterize how relief memories, once formed, decay. In addition, concerning the psychological mechanisms of relief learning, first, I show that relief learning establishes genuinely associative conditioned approach behaviour and second, I report that it is most likely not mediated by context associations. These results enable the following neurobiological analysis of relief learning; further, they will form in the future the basis for a mathematical model; finally, they will guide the researchers aiming at uncovering relief learning in other experimental systems. Next, I embark upon neurogenetic analysis of relief learning. First, I report that fruit flies mutant for the so called white gene build overall more ‘negative’ memories about an experience with electric shock. That is, in the white mutants, learning about the painful onset of shock is enhanced, whereas learning about the relieving offset of shock is diminished. As they are coherently affected, these two kinds of learning should be in a balance. The molecular mechanism of the effect of white on this balance remains unresolved. Finally, as a first step towards a neuronal circuit analysis of relief learning, I compare it to reward learning and punishment learning. I find that relief learning is distinct from both in terms of the requirement for biogenic amine signaling: Reward and punishment are respectively signalled by octopamine and dopamine, for relief learning, either of these seem dispensible. Further, I find no evidence for roles for two other biogenic amines, tyramine and serotonin in relief learning. Based on these findings I give directions for further research. N2 - Vergangene Ereignisse beeinflussen die Organisation des Verhaltens hauptsächlich durch das Lernen: Tiere lernen natürlich vorkommende neutrale Reize als Signal für biologisch relevante Ereignisse zu nutzen. Diese Dissertation befasst sich mit derartigen assoziativen Lernvorgängen bei der Taufliege Drosophila melanogaster. Ich stelle zwei, sich ergänzende, grundlegende Fragen: Die eine Frage beschäftigt sich mit der Verarbeitung von Reizen, die als Signal für ein wichtiges Ereignis erlernt werden. Die andere Frage behandelt die Verarbeitung des Ereignisses selbst. Lernen Taufliegen etwas über Kombinationen von olfaktorischen und visuellen Reizen? Sowohl bei larvalen, als auch bei adulten Taufliegen wird das Lernen von Kombinationen aus olfaktorischen und visuellen Stimuli untersucht. Ich verwende einen sogenannten „bikonditionalen Diskriminierungs-Versuchsaufbau“: Während des Trainings wird ein Duft nur im Licht und nicht im Dunkeln mit Reinforcement kombiniert, während ein anderer Duft nur im Dunkeln und nicht im Licht mit Reinforcement kombiniert wird. Somit signalisieren weder die Düfte, noch die visuellen Bedingungen allein das Reinforcement, sondern nur eine Kombination aus Beiden. Ich finde keine Beweise dafür, dass larvale oder adulte Taufliegen eine solche Aufgabe lösen können. Dies spricht gegen eine Interaktion zwischen olfaktorischen und visuellen Modalitäten. Allerdings weisen frühere Studien auf derartige Interaktionen hin. Um meine Ergebnisse mit den bekannten Studien in Einklang zu bringen, ordne ich die unterschiedlichen Interaktionen zwischen den sensorischen Modalitäten nach ihrer Lage entlang des sensorisch-motorischen Kontinuums: Ich bezeichnen eine Interaktion für „echt“ cross-modal, wenn sie zwischen den spezifischen Eigenschaften der beiden Reize stattfindet. Ich halte eine Interaktion für „amodal“, wenn sie zwischen den von den Reizen induzierten Verhaltenstendenzen und „Werten“ stattfindet. Aufgrund dieser Argumentation komme ich zu der Schlussfolgerung, dass unterschiedliche Verhaltensaufgaben unterschiedliche Interaktionen zwischen den sensorischen Modalitäten erfordern. Ob eine Art von Interaktion gefunden wird oder nicht hängt von der neuronalen Vernetzung ab, welche charakteristisch für Art und Entwicklungsstadium ist. Assoziatives Lernen von Schmerz-Erleichterung bei Taufliegen Taufliegen entwickeln zwei unterschiedliche Arten von Gedächtnissen basierend auf Erfahrung mit Elektro-Schock: Düfte, die während des Trainings dem Schock vorausgehen, werden als Bestrafungssignale gelernt und deshalb vermieden. Düfte, die während des Trainings auf den Schock folgen, werden als Erleichterungssignale gelernt und deshalb bevorzugt. Ich beschäftige mich mit der zweiten Art dieses assoziativen Lernens, das ich als „Erleichterungslernen“ bezeichne. Ich beginne mit einer detaillierten parametrischen Analyse des Erleichterungslernens. Die Reproduzierbarkeit, sowie die Einflüsse des Geschlechts, der Anzahl an Trainingswiederholungen, der Duftintensität, der Duftkonzentration und der Schockintensität werden geprüft. Ich teste, wie das Erleichterungsgedächtnis, nachdem es gebildet wurde, wieder gelöscht wird. Des Weiteren gehe ich zwei wichtigen Fragen zu den psychologischen Mechanismen des Erleichterungslernen nach: Zum einen zeige ich, dass das Erleichterungslernen echtes assoziativ konditioniertes Annäherungsverhalten etabliert. Zum anderen zeige ich, dass vorausgegangenes Kontext-Schock Training das folgende Erleichterungslernen nicht beeinflusst. Das Erleichterungslernen wird also nicht durch Kontextassoziation vermittelt. Diese Ergebnisse erlauben die folgende neurobiologische Analyse des Erleichterungslernens. Außerdem werden sie in Zukunft als Grundlage für ein mathematisches Modell des Erleichterungslernens dienen. Schließlich werden die Forscher/innen, die das Erleichterungslernen in anderen experimentellen Systemen untersuchen, von diesen parametrischen Erkenntnissen profitieren. In einer neurobiologischen Analyse des Erleichterungslernens zeige ich, dass der Verlust der Funktion des sogenannten white Gens die beiden unterschiedlichen Arten von Schock-Induziertem Lernen zusammenhängend beeinflusst: Das Bestrafungslernen wird verstärkt und das Erleichterungslernen wird abgeschwächt. Auf Grund dieses Ergebnisses schlagen ich vor, dass sich diese zwei Arten von Lernen in einem Gleichgewicht befinden sollen, welches vom white Gen beeinflusst wird. Die zugrunde liegenden molekularen Mechanismen eines solchen Gleichgewichts sind noch nicht bekannt. Schließlich vergleiche ich das Erleichterungslernen mit dem Belohnungslernen und dem Bestrafungslernen. Ich zeige, dass das Erleichterungslernen anders ist als beide: Bestrafung und Belohnung werden entsprechend von Dopamin und Octopamin vermittelt. Für das Erleichterungslernen sind beide diese biogenen Aminen unnötig. Ebenso finde ich beim Erleichterungslernen keinen Beleg für die Rolle von zwei weiteren Aminen: Tyramin und Serotonin. Aufgrund dieser Ergebnisse schlage ich vor weitere Forschungsrichtungen. KW - Lernen KW - Drosophila KW - Neurogenetik KW - Lernverhalten KW - olfaktorik KW - sehen KW - erleichterungslernen KW - associative learning KW - drosophila KW - neurogenetic analyses KW - behavioural analyses KW - relief Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-28741 ER - TY - THES A1 - Thum, Andreas Stephan T1 - Sugar reward learning in Drosophila : neuronal circuits in Drosophila associative olfactory learning T1 - Zucker-Belohnungslernen von Drosophila N2 - Genetic intervention in the fly Drosophila melanogaster has provided strong evidence that the mushroom bodies of the insect brain act as the seat of memory traces for aversive and appetitive olfactory learning (reviewed in Heisenberg, 2003). In flies, electroshock is mainly used as negative reinforcer. Unfortunately this fact complicates a comparative consideration with other inscets as most studies use sugar as positive reinforcer. For example, several lines of evidence from honeybee and moth have suggested another site, the antennal lobe, to house neuronal plasticity underlying appetitive olfactory memory (reviewed in Menzel, 2001; Daly et al., 2004). Because of this I focused my work mainly on appetitive olfactory learning. In the first part of my thesis, I used a novel genetic tool, the TARGET system (McGuire et al., 2003), which allows the temporally controlled expression of a given effector gene in a defined set of cells. Comparing effector genes which either block neurotransmission or ablate cells showed important differences, revealing that selection of the appropriate effector gene is critical for evaluating the function of neural circuits. In the second part, a new engram of olfactory memory in the Drosophila projection neurons is described by restoring Rutabaga adenlylate cyclase (rut-AC) activity specifically in these cells. Expression of wild-type rutabaga in the projection neurons fully rescued the defect in sugar reward memory, but not in aversive electric shock memory. No difference was found in the stability of the appetitive memories rescued either in projection neurons or Kenyon cells. In the third part of the thesis I tried to understand how the reinforcing signals for sugar reward are internally represented. In the bee Hammer (1993) described a single octopaminergic neuron – called VUMmx1 – that mediates the sugar stimulus in associative olfactory reward learning. Analysis of single VUM neurons in the fly (Selcho, 2006) identified a neuron with a similar morphology as the VUMmx1 neuron. As there is a mutant in Drosophila lacking the last enzymatic step in octopamine synthesis (Monastirioti et al., 1996), Tyramine beta Hydroxylase, I was able to show that local Tyramine beta Hydroxylase expression successfully rescued sugar reward learning. This allows to conclude that about 250 cells including the VUM cluster are sufficient for mediating the sugar reinforcement signal in the fly. The description of a VUMmx1 similar neuron and the involvement of the VUM cluster in mediating the octopaminergic sugar stimulus are the first steps in establishing a neuronal map for US processing in Drosophila. Based on this work several experiments are contrivable to reach this ultimate goal in the fly. Taken together, the described similiarities between Drosophila and honeybee regarding the memory organisation in MBs and PNs and the proposed internal representation of the sugar reward suggest an evolutionarily conserved mechanism for appetitive olfactory learning in insects. N2 - Arbeiten über das assoziative olfaktorische Lernen bei Drosophila, bei denen definierte Gruppen von Nerven genetisch verändert wurden, haben gezeigt, dass die Pilzkörper des Insektengehirns Gedächtnisspuren für aversives und appetitives Geruchslernen besitzen (Heisenberg, 2003). Hierzu wird bei der Fliege meistens Elektroschock als negativer Reiz bei der Pavlovschen Konditionierung benutzt. Leider erschwert dies einen Vergleich mit anderen Insekten, da in den meisten Studien Zucker als positiver Stimulus verwendet wird. Interessanterweise schlagen mehrere Arbeiten bei der Biene und der Motte zusätzlich zu den Pilzkörpern einen weiteren Bereich im Insektengehirn vor, der eine Gedächtnisspur des appetitiven Geruchslernens besitzt, die Antennalloben (Menzel, 2001; Daly et al., 2004). Aus diesen Gründen habe ich mich in meiner Arbeit intensiv mit dem appetitiven Geruchslernen beschäftigt. Im ersten Teil meiner Arbeit habe ich das TARGET System verwendet (McGuire et al., 2003), welches die zeitlich kontrollierte Expression eines beliebigen Reportergens in definierten Zellen erlaubt. Ein Vergleich verschiedener Effektoren zeigte, dass Proteine, die die Neurotransmission blocken (Shits; TNT, Kir2.1), besser geeignet sind, um die Funktion neuronaler Schaltkreise in Drosophila zu untersuchen. Effektoren, die Zellen abtöten, entfalten lediglich während der Entwicklung ihre volle Aktivität und eignen sich daher, z.B. um das larvale Verhalten zu analysieren. Im zweiten Teil beschreibe ich eine neue Gedächtnisspur für das Geruchslernen in den Projektionsneuronen. Die Expression des wildtypischen rutabaga Gens ausschließlich in diesen Zellen, rettete den Defekt im Zuckerlernen, nicht aber im Elektroschocklernen. Ferner scheinen die Gedächtnisspuren des appetitven Geruchslernens im Pilzkörper und den Projektionsneuronen gleich stabil zu sein. Im dritten Teil dieser Arbeit wurde die Frage gestellt, wie das Belohnungssignal des Zuckers im Fliegengehirn verarbeitet wird. Hammer (1993) beschrieb in der Biene ein einzelnes octopaminerges Neuron, das VUMmx1 Neuron, welches den Zuckerreiz beim assoziativen Geruchslernen vermittelt. Eine Einzelzellanalyse des VUM clusters von Drosophila zeigte ein ähnliches VUMmx1 Neuron erstmals bei der Fliege (M. Selcho, Diplomarbeit). Durch die lokale Expression der Tyramin beta Hydroxylase, das Oktopamin synthetisierende Enzym, im T-beta-H Mutanten Hintergrund, konnte gezeigt werden, dass ca. 250 Zellen (inklusive des VUM Clusters) ausreichen, das Belohnungssignal des Zuckers zu vermitteln. Beides, die Identifizierung eines VUMmx1 ähnlichen Neurons in der Fliege und die Eingrenzung der Neuronen, die das Belohnungssignal vermitteln, bilden die Basis für weitergehende Versuche. Diese erlauben es, neuronale Schaltkreise der US (Zucker)-Verarbeitung beim assoziativen olfaktorischen Lernen detailliert zu beschreiben. Insgesamt legen die übereinstimmenden Gedächtnisspuren im Pilzkörper und den Projektionsneuronen von Drosophila und der Honigbiene nahe, dass das olfaktorische Belohnungslernen einem in der Evolution konservierten Mechanismus entstammt. KW - Taufliege KW - Geruchswahrnehmung KW - Lernen KW - Neurologie KW - Zucker KW - Lernen KW - Gedächtnis KW - Dropsophila KW - sugar KW - learning KW - memory KW - drosophila Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-17930 ER - TY - THES A1 - Masek, Pavel T1 - Odor intensity learning in Drosophila T1 - Duftintensitätslernen bei Drosophila N2 - It has been known for a long time that Drosophila can learn to discriminate not only between different odorants but also between different concentrations of the same odor. Olfactory associative learning has been described as a pairing between odorant and electric shock and since then, most of the experiments conducted in this respect have largely neglected the dual properties of odors: quality and intensity. For odorant-coupled short-term memory, a biochemical model has been proposed that mainly relies on the known cAMP signaling pathway. Mushroom bodies (MB) have been shown to be necessary and sufficient for this type of memory, and the MB-model of odor learning and short-term memory was established. Yet, theoretically, based on the MB-model, flies should not be able to learn concentrations if trained to the lower of the two concentrations in the test. In this thesis, I investigate the role of concentration-dependent learning, establishment of a concentration-dependent memory and their correlation to the standard two-odor learning as described by the MB-model. In order to highlight the difference between learning of quality and learning of intensity of the same odor I have tried to characterize the nature of the stimulus that is actually learned by the flies, leading to the conclusion that during the training flies learn all possible cues that are presented at the time. The type of the following test seems to govern the usage of the information available. This revealed a distinction between what flies learned and what is actually measured. Furthermore, I have shown that learning of concentration is associative and that it is symmetrical between high and low concentrations. I have also shown how the subjective quality perception of an odor changes with changing intensity, suggesting that one odor can have more than one scent. There is no proof that flies perceive a range of concentrations of one odorant as one (odor) quality. Flies display a certain level of concentration invariance that is limited and related to the particular concentration. Learning of concentration is relevant only to a limited range of concentrations within the boundaries of concentration invariance. Moreover, under certain conditions, two chemically distinct odorants could smell sufficiently similarly such, that they can be generalized between each other like if they would be of the same quality. Therefore, the abilities of the fly to identify the difference in quality or in intensity of the stimuli need to be distinguished. The way how the stimulus is analyzed and processed speaks in favor of a concept postulating the existence of two separated memories. To follow this concept, I have proposed a new form of memory called odor intensity memory (OIM), characterized it and compared it to other olfactory memories. OIM is independent of some members of the known cAMP signaling pathway and very likely forms the rutabaga-independent component of the standard two-odor memory. The rutabaga-dependent odor memory requires qualitatively different olfactory stimuli. OIM is revealed within the limits of concentration invariance where the memory test gives only sub-optimal performance for the concentration differences but discrimination of odor quality is not possible at all. Based on the available experimental tools, OIM seems to require the mushroom bodies the same as odor-quality memory but its properties are different. Flies can memorize the quality of several odorants at a given time but a newly formed memory of one odor interferes with the OIM stored before. In addition, the OIM lasts only 1 to 3 hours - much shorter than the odor-quality memory. N2 - Assoziatives olfaktorisches Lernen bei Drosophila wurde ursprünglich als die Paarung eines Duftes mit einem elektrischen Bestrafungsreiz beschrieben. Seit langem ist dazu bekannt, daß Drosophila nicht nur lernen kann zwei Düfte zu unterscheiden, sondern auch verschiedene Konzentrationen desselben Dufts. Jedoch wird in den meisten auf diese Art durchgeführten Experimenten die Duftintensität weitestgehend ignoriert. - Für das olfaktorische Kurzzeitgedächtnis wurde ein biochemisches Modell vorgeschlagen, welches sich hauptsächlich auf die bekannte cAMP-Signalkaskade stützt. Es wurde gezeigt, dass die Pilzkörper (mushroom bodies, „MB“) notwendig und hinreichend für diese Art der Gedächtnisbildung sind und ein MB-Modell für Duftlernen und Kurzzeitgedächtnis konnte etabliert werden. Interessanterweise sollten Fliegen nach diesem Modell Konzentrationsunterschiede nur in einer Richtung lernen können. Sie würden den gelernten Duft nur gegenüber einer niedrigeren Konzentration wiedererkennen. In der vorliegenden Doktorarbeit habe ich das konzentrationsabhängige Duftlernen und seine Beziehung zum MB-Modell untersucht. Dabei hat sich gezeigt, dass die Fliege eine Gedächtnisspur für Geruchsintensität anlegt. Um den Unterschied zwischen dem Lernen einer Qualität und dem einer Intensität des gleichen Duftes hervorzuheben, habe ich versucht, den Reiz, der eigentlich von der Fliege gelernt wird, zu charakterisieren. Dies führte zu der Schlussfolgerung, dass die Fliege während des Trainings alle in diesem Zeitabschnitt präsentierten Reize erlernt. Erst der dem Training folgende Test scheint den Gebrauch der verfügbaren Information festzulegen. Diese Erkenntnis ist eine wesentliche Grundlage um zwischen dem Testergebnis und dem, was die Fliege gelernt hat zu unterscheiden. Ich habe außerdem gezeigt, daß das Konzentrationslernen eine Form assoziativen Lernens ist und, dass entgegen der Erwartung nach dem MB-Modell eine Symmetrie zwischen den Lernwerten für die hohe und niedrige Konzentration besteht. Es gibt keinen Beweis dafür, dass Fliegen eine Vielfalt von Konzentrationen desselben Duftes als ein und dieselbe (Duft-)Qualität wahrnehmen. Die Ergebnisse legen vielmehr nahe, dass sich bei einer größeren Veränderung der Intensität eines Duftes für die Fliege (wie in vielen Fällen auch beim Menschen) seine Qualität verändert. Demzufolge ist mit jedem Geruchsstoff mehr als nur eine Fliegen-subjektive Geruchsqualität verbunden. Fliegen zeigen andererseits in engen Grenzen Konzentrationsinvarianz. Sie generalisieren zwischen Konzentrationen eines Duftes innerhalb einer Konzentrationsdekade. Deshalb ist das Konzept des Konzentrationslernens nur für ein begrenztes Konzentrationsspektrum innerhalb der Grenzen der Konzentrationsinvarianz relevant. Des weiteren habe ich gezeigt, dass unter besonderen Bedingungen zwei chemisch verschiedene Düfte generalisiert werden können. Möglicherweise haben die beiden Düfte hinreichend "ähnliche" oder gleiche Fliegen-subjektive Qualität und können nur nach der Intensität unterschieden werden. Die Fliege hat die Fähigkeit im Test Unterschiede einerseits in der Qualität und andererseits in der Intensität des Reizes zu ermitteln. Die Art und Weise, wie der Reiz analysiert und verarbeitet wird, erfordern ein Konzept zweier getrennter Gedächtnisse. Dementsprechend habe ich eine neue Gedächtnisart, ein sogenanntes Duftintensitätsgedächtnis (OIM) vorgeschlagent und versucht dieses neben anderen olfaktorischen Gedächtnissen einzuordnen. Das OIM ist unabhängig bezüglich einiger Bestandteile des bekannten cAMP-Signalwegs und stellt höchstwahrscheinlich den rutabaga-unabhängigen Teil des Zwei-Düfte-Lernens dar. Das rutabaga-abhängige Duftgedächtnis benötigt qualitativ verschiedene Duftreize. Das OIM reicht lediglich für eine suboptimale Leistung aus, funktioniert aber in den Grenzen der Konzentrationsinvarianz, innerhalb derer die Diskriminierung und damit auch das Lernen der Duftqualität nicht möglich sind. Das OIM scheint wie die Duftqualitätsgedächtnisse die Pilzkörper zu benötigen. Aber die Art der Speicherung ist von der der Duftqualitätsgedächtnisse verschieden. Fliegen können viele Duftqualitäten zu einem bestimmten Zeitpunkt aus dem Gedächtnis abrufen, jedoch interferiert ein neu gebildetes Gedächtnis eines bestimmten Duftes mit dem bereits gespeicherten OIM. Außerdem ist das OIM für nur 1-3 Stunden stabil, was erheblich kürzer als beim Duftgedächtnis ist. KW - Taufliege KW - Geruchswahrnehmung KW - Gedächtnis KW - Lernen KW - Intensität KW - Olfaktorik KW - Lernen KW - Gedächtnis KW - Drosophila KW - intensity KW - olfaction KW - memory KW - learning KW - Drosophila Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15546 ER - TY - THES A1 - Schwärzel, Martin T1 - Localizing engrams of olfactory memories in Drosophila T1 - Lokalisation von Duftgedächtnissen in Drosophila N2 - Zars and co-workers were able to localize an engram of aversive olfactory memory to the mushroom bodies of Drosophila (Zars et al., 2000). In this thesis, I followed up on this finding in two ways. Inspired by Zars et al. (2000), I first focused on the whether it would also be possible to localize memory extinction.While memory extinction is well established behaviorally, little is known about the underlying circuitry and molecular mechanisms. In extension to the findings by Zars et al (2000), I show that aversive olfactory memories remain localized to a subset of mushroom body Kenyon cells for up to 3 hours. Extinction localizes to the same set of Kenyon cells. This common localization suggests a model in which unreinforced presentations of a previously learned odorant intracellularly antagonizes the signaling cascades underlying memory formation. The second part also targets memory localization, but addresses appetitive memory. I show that memories for the same olfactory cue can be established through either sugar or electric shock reinforcement. Importantly, these memories localize to the same set of neurons within the mushroom body. Thus, the question becomes apparent how the same signal can be associated with different events. It is shown that two different monoamines are specificaly necessary for formation of either of these memories, dopamine in case of electric shock and octopamine in case of sugar memory, respectively. Taking the representation of the olfactory cue within the mushroom bodies into account, the data suggest that the two memory traces are located in the same Kenyon cells, but in separate subcellular domains, one modulated by dopamine, the other by octopamine. Taken together, this study takes two further steps in the search for the engram. (1) The result that in Drosophila olfactory learning several memories are organized within the same set of Kenyon cells is in contrast to the pessimism expressed by Lashley that is might not be possible to localize an engram. (2) Beyond localization, a possibible mechanism how several engrams about the same stimulus can be localized within the same neurons might be suggested by the models of subcellular organisation, as postulated in case of appetitive and aversive memory on the one hand and acquisition and extinction of aversive memory on the other hand. N2 - Troy Zars und seine Mitarbeiter konnten für das olfaktorische Elektoschockgedächtnis von Drosophila zum ersten mal die Spur eines Duftgedächtnisses in den Pilzkörpern (PK) lokalisieren. Darauf aufbauend stelle ich nun in dieser Arbeit zwei Fragen: 1. Wäre es möglich auch den Prozess der Auslöschung dieses Gedächtnissen zu lokalisieren? Obwohl die Verhaltensphysiologie der Gedächtnisauslöschung sehr gut charakterisiert sind weiss man sehr wenig über die daran beteiligten molekularen Signalmechanismen und Strukturen. In Anlehnung an die Arbeit von Zars et al. (2000) kann ich zeigen, dass sowohl die Speicherung wie auch die Auslöschung dieses Gedächt-nisses in den gleichen Kenyonzellen der PK geschieht. Diese gemeinsame zelluläre Lokalisierung legt ein Model nahe, in dem die wiederholte Präsentation des mit Elektro-schock assoziierten Duftes während der Auslöschung, intrazellulär auf die gleichen Signalwege wirkt die auch für die Bildung des Duftgedächtnisses notwendig sind. 2. Wäre es möglich auch die Spur eines attraktive Duftgedächtnisses zu lokalisieren? Ich kann zeigen, dass Gedächtnisse über den gleichen Duft sowohl attraktiv als auch repulsiv sein können, je nachdem ob Zucker oder Elektroshock während der pavlovschen Konditionierung benutzt wird. Beide Gedächtnisse sind im gleichen Satz von Kenyonzellen lokalisiert. Dies wirft die Frage auf, wie das gleiche Duftsignal mit zwei verschiedenen Ereignissen (Zucker und Elektroschock) assoziiert werden kann. Es zeigt sich, dass zwei unterschiedliche Monoamine jeweils spezifisch für das Anlegen eines der beiden Gedächtnisse verantwortlich sind; Dopamin für das Electroschockgedächtnis und Octopamin für das Zuckergedächtnis. Berücksichtigt man wie Duftreize in den PK kodiert sind, ergibt sich ein Model bei dem zwar beide Spuren in einer Zelle lokalisiert sind, diese jedoch durch die Nutzung unterschiedlicher subzellulärer Bereiche voneinander getrennt werden. Jeweils einer dieser Bereiche wäre durch Dopamin moduliert, der andere durch Octopamin. Das Fazit dieser Studie ist, dass zwei wichtige Punkte bei der Lokalisierung von Gedächtnis-spuren aufgezeigt wurden. (1) Die Tatsache, dass beim Duftlernen von Drosophila mehrere Spuren verschiedener Duftgedächtnisse lokalisiert worden sind widerlegt die von Lashley aufgestellte Behauptung, dass Gedächtnisse nicht lokalisierbar sind. (2) Verschiedene Spuren können für den gleichen Duft in den gleichen Zellen angelegt werden, sofern man eine subzelluläre Organisation annimmt, wie sie sowohl für Zucker- und Elektroschockgedächtnis, als auch Gedächtnisbildung und Auslöschen vorgeschlagen werden KW - Taufliege KW - Gedächtnis KW - Lernen KW - Signaltransduktion KW - Gedächtnis KW - Verhalten KW - Catecholamine KW - Signaltransduktion KW - Lernen KW - Memory KW - Behaviour KW - catecholamines KW - signaltransduction KW - learning Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-5065 ER - TY - THES A1 - Höhn, Holger T1 - Multimediale, datenbankgestützte Lehr- und Lernplattformen T1 - Multimedia, Database Supported Teaching and Learning Environments N2 - Die Dissertation befaßt sich mit der Entwicklung einer multimedialen, datenbankgestützten Lehr- und Lernplattform. Die entwickelten Module ermöglichen und erweitern nicht nur die Möglichkeit des Selbststudiums für den Studenten sondern erleichtern auch die Arbeit der Dozenten. Außerdem wird auch die Zusammenarbeit und der Austausch von Lernobjekten zwischen verschiedenen Institutionen ermöglicht. In der Lehr- und Lernplattform können verschiedene Lernobjekt-Typen verwaltet werden. Exemplarisch wurden die Typen Bilder, 3D-Animationen, Vorlesungen, Lerntexte, Fallbeispiele und Quizelemente integriert. Die Lehr- und Lernplattform besteht aus drei Bausteinen: 1. In der Lernobjekt-Datenbank werden alle Lernobjekt-Typen und Lernobjekte verwaltet. 2. Autorenwerkzeuge dienen zur Erstellung von Lernobjekten. 3. In der Lernplattform werden die Lernobjekte den Studenten zum (Selbst-)Lernen präsentiert. Neben den Vorteilen, die der Einsatz von E-Learning im allgemeinen bietet, wie die flexible Lernorganisation oder die Nutzung von Lerninhalten unabhängig von Ort und Zeit, zeichnet sich die entwickelte Lehr- und Lernplattform besonders durch folgende Punkte aus: Generierung von Lerninhalten höherer Qualität durch multizentrische Expertenbündelung und Arbeitsteilung, Erweiterbarkeit auf andere, neue Lernobjekt-Typen, Verwaltbarkeit, Konsistenz, Flexibilität, geringer Verwaltungsaufwand, Navigationsmöglichkeiten für den Studenten, Personalisierbarkeit und Konformität zu internationalen Standards. Sowohl bei der Modellierung als auch bei der Umsetzung wurde darauf geachtet, möglichst gut die Anforderungen der Dermatologie bei gleichzeitiger Erweiterbarkeit auf andere, ähnliche Szenarien zu erfüllen. Besonders einfach sollte die Anpassung der Plattform für andere bildorientierte Disziplinen sein. N2 - In this thesis a multimedia teaching and learning environment was developed. The center of interest are learning objects which can be classified into different types. The types and objects are stored and adminstered in a database. As examples lectures, learning texts, 3D-animations, images, videos and quiz elements were integrated. For the generation of learning objects authoring tools were developed for each type. The teaching and learning environment offers the following features: lectureres are supported in preparing lectures. Because learning objects can be exchanged between different environments, the generation of "high quality" objects is encouraged. New types of learning objects can be integrated easily. Students are able to learn time-independent. The system was tested in dermatology, but the adaption to other, especially visually oriented disciplines is easy. KW - Multimedia KW - Anwendung KW - Forschung KW - Lehre KW - Lehre KW - Multimedia KW - Datenbanken KW - Lernen KW - Multimedia KW - Learning KW - Teaching KW - Databases Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-4049 ER - TY - THES A1 - Brembs, Björn T1 - An Analysis of Associative Learning in Drosophila at the Flight Simulator T1 - Eine Ananlyse des assoziativen Lernens von Drosophila im Flugsimulator N2 - Most natural learning situations are of a complex nature and consist of a tight conjunction of the animal's behavior (B) with the perceived stimuli. According to the behavior of the animal in response to these stimuli, they are classified as being either biologically neutral (conditioned stimuli, CS) or important (unconditioned stimuli, US or reinforcer). A typical learning situation is thus identified by a three term contingency of B, CS and US. A functional characterization of the single associations during conditioning in such a three term contingency has so far hardly been possible. Therefore, the operational distinction between classical conditioning as a behavior-independent learning process (CS-US associations) and operant conditioning as essentially behavior-dependent learning (B-US associations) has proven very valuable. However, most learning experiments described so far have not been successful in fully separating operant from classical conditioning into single-association tasks. The Drosophila flight simulator in which the relevant behavior is a single motor variable (yaw torque), allows for the first time to completely separate the operant (B-US, B-CS) and the classical (CS-US) components of a complex learning situation and to examine their interactions. In this thesis the contributions of the single associations (CS-US, B-US and B-CS) to memory formation are studied. Moreover, for the first time a particularly prominent single association (CS-US) is characterized extensively in a three term contingency. A yoked control shows that classical (CS-US) pattern learning requires more training than operant pattern learning. Additionally, it can be demonstrated that an operantly trained stimulus can be successfully transferred from the behavior used during training to a new behavior in a subsequent test phase. This result shows unambiguously that during operant conditioning classical (CS-US) associations can be formed. In an extension to this insight, it emerges that such a classical association blocks the formation of an operant association, which would have been formed without the operant control of the learned stimuli. Instead the operant component seems to develop less markedly and is probably merged into a complex three-way association. This three-way association could either be implemented as a sequential B-CS-US or as a hierarchical (B-CS)-US association. The comparison of a simple classical (CS-US) with a composite operant (B, CS and US) learning situation and of a simple operant (B-US) with another composite operant (B, CS and US) learning situation, suggests a hierarchy of predictors of reinforcement. Operant behavior occurring during composite operant conditioning is hardly conditioned at all. The associability of classical stimuli that bear no relation to the behavior of the animal is of an intermediate value, as is operant behavior alone. Stimuli that are controlled by operant behavior accrue associative strength most easily. If several stimuli are available as potential predictors, again the question arises which CS-US associations are formed? A number of different studies in vertebrates yielded amazingly congruent results. These results inspired to examine and compare the properties of the CS-US association in a complex learning situation at the flight simulator with these vertebrate results. It is shown for the first time that Drosophila can learn compound stimuli and recall the individual components independently and in similar proportions. The attempt to obtain second-order conditioning with these stimuli, yielded a relatively small effect. In comparison with vertebrate data, blocking and sensory preconditioning experiments produced conforming as well as dissenting results. While no blocking could be found, a sound sensory preconditioning effect was obtained. Possible reasons for the failure to find blocking are discussed and further experiments are suggested. The sensory preconditioning effect found in this study is revealed using simultaneous stimulus presentation and depends on the amount of preconditioning. It is argued that this effect is a case of 'incidental learning', where two stimuli are associated without the need of reinforcement. Finally, the implications of the results obtained in this study for the general understanding of memory formation in complex learning situations are discussed. N2 - Die meisten Lernsituationen sind von komplexer Natur und bestehen aus einer engen Verknüpfung des Verhaltens eines Tieres (B) mit den wahrgenommenen Stimuli. Entsprechend der Reaktion des Tieres auf diese Stimuli werden diese als entweder biologisch neutral (konditionierte Stimuli, CS) oder signifikant (unkonditionierte Stimuli, US oder Verstärker) klassifiziert. Eine typische Lernsituation ist also durch eine Dreiwegebeziehung zwischen B, CS und US gekennzeichnet. Eine funktionelle Charakterisierung der Einzelassoziationen während des Lernens in einer solchen Dreiwegebeziehung war experimentell bisher kaum zugänglich. Operationell wird daher zwischen klassischer Konditionierung als verhaltensunabhängigem Lernvorgang (CS-US Assoziationen) und operanter Konditionierung als essentiell verhaltensabhängigem Lernen (B-US Assoziationen) unterschieden. In den meisten bisher beschriebenen Lernexperimenten ist noch nicht einmal diese Trennung in Einzelassoziationen vollständig durchzuführen gewesen. Im Drosophila Flugsimulator, in dem das relevante Verhalten eine einzelne Bewegungsvariable (das Gierungsdrehmoment) ist, können zum ersten Mal die operanten (B-US, B-CS) und die klassischen (CS-US) Bestandteile einer komplexen Lernsituation völlig getrennt und auf ihre Interaktionen hin untersucht werden. In der vorliegenden Arbeit wurden sowohl die Beiträge der Einzelassoziationen (CS-US, B-US und B-CS) bei der Akquisition der Gedächtnismatrize in komplexen Lernsituationen untersucht, als auch die Eigenschaften einer besonders prominenten Einzelassoziation (CS-US) während einer komplexen Lernsituation zum ersten Mal weitgehend charakterisiert. Mit einer gejochten (yoked) Kontrolle kann gezeigt werden, dass das klassische (CS-US) Musterlernen umfangreicheres Training als das operante Musterlernen erfordert. Außerdem kann die Fliege einen operant gelernter Stimulus von dem Verhalten mit dem er gelernt wurde, auf ein anderes Verhalten im Test übertragen. Dieses Resultat zeigt eindeutig, dass während der operanten Konditionierung klassische (CS-US) Assoziationen gebildet werden können. In einer Erweiterung dieses Ergebnisses zeigt sich, dass solch eine klassische Assoziation, wenn sie gebildet wird, die Bildung einer operanten Assoziation blockiert, die ohne operante Kontrolle der klassisch assoziierten Stimuli gebildet würde. Stattdessen scheint sich der operante Bestandteil weniger ausgeprägt zu entwickeln und ist eventuell in einer komplexen Dreiwege-Assoziation eingebunden. Die Dreiwege-Assoziation könnte entweder als sequentielle B-CS-US oder als hierarchische (B-CS)-US Assoziation implementiert sein. Der Vergleich einer einfachen klassischen (CS-US) mit einer komplexen operanten (B, CS und US) Lernsituation und einer einfachen operanten (B-US) mit einer anderen komplexen operanten (B, CS und US) Lernsituation, ermöglicht das Postulat einer Hierarchie der Prädiktoren für Verstärker. Operantes Verhalten während einer komplexen operanten Lernsituation wird wenig oder überhaupt nicht konditioniert. Die Assoziierbarkeit der klassischen Stimuli ohne Relation zum Verhalten des Tieres (CS-US) sind - wie operantes Verhalten alleine (B-US) auch - von mittlerer Assoziierbarkeit. Stimuli die von operantem Verhalten kon-trolliert werden, erhöhen am schnellsten ihre assoziative Stärke. Sind mehrere Stimuli während des Lernvorgangs zugänglich, stellt sich erneut die Frage, welche von den CS-US Assoziationen gebildet werden. Eine Vielzahl verschiedenster Studien in Vertebraten wiesen erstaunlich übereinstimmende Ergebnisse auf. Diese Ergebnisse inspirierten dazu, die Eigenschaften der CS-US Assoziationen in der komplexen Lernsituation am Flugsimulator zu untersuchen und mit Ergebnissen in Vertebraten zu vergleichen. Es wird erstmals gezeigt, dass Drosophila zusammengesetzte Stimuli lernen und die Einzelkomponenten unabhängig voneinander und in etwa ähnlichen Proportionen wiedererkennen kann. Der Versuch "Lernen zweiter Ordnung" mit diesen Stimuli zu erzielen, liefert einen relativ kleinen Effekt. Die Gegenüberstellung mit Daten aus Vertebraten liefert sowohl Abweichungen als auch Übereinstimmungen hinsichtlich der Lernregeln, die beim klassischen Konditionieren von Vertebraten gefunden wurden. Während es ein deutliches "sensorisches Präkonditionieren" gibt, konnte kein "Blocken" gefunden werden. Das sensorische Präkonditionieren in dieser Studie zeigt sich bei gleichzeitiger Stimuluspräsentation und ist vom Mass der Präkonditionierung abhängig. Es wird argumentiert, dass dieser Effekt ein Fall "beiläufigen Lernens" ist, bei dem zwei Stimuli ohne die Notwendigkeit der Verstärkung assoziiert werden. Für das nicht gefundene Blocken werden mögliche Gründe diskutiert und weiterführende Experimente vor-geschlagen. Abschließend wird über die Implikationen der Resultate dieser Arbeit für das allgemeine Verständnis der Gedächtnisbildung in komplexen Lernsituationen nachgedacht. KW - Taufliege KW - Lernen KW - Flugsimulator KW - Drosophila KW - Lernen KW - Gedächtnis KW - Assoziation KW - assoziativ KW - Flugsimulator KW - Lernregeln KW - operantes Konditionieren KW - klassisches Konditionieren KW - Drosophila KW - learning KW - memory KW - association KW - associative KW - flight simulator KW - learning rules KW - operant conditioning KW - classical conditioning Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-1039 ER -