TY - JOUR A1 - Waelbroeck, M. A1 - Camus, J. A1 - Tastenoy, M. A1 - Mutschler, E. A1 - Strohmann, C. A1 - Tacke, Reinhold A1 - Lambrecht, G. A1 - Christophe, J. T1 - Stereoselectivity of (R)- and (S)-hexahydro-difenidol binding to neuroblastoma M\(_1\), cardiac M\(_2\), pancreatic M\(_3\), and striatum M\(_4\) muscarinic receptors N2 - (R)-Hexahydro-difenidol has a higher affinity for M\(_1\) receptors in NB-OK 1 cells, pancreas M\(_3\) and striatum M\(_4\) receptors (pKi 7.9 to 8.3) than for cardiac M2 receptors (pKi 7 .0). (8)-Hexahydro-difenidol, by contrast, is nonselective (pKi 5.8 to 6.1). Our goal in the present study was to evaluate the importance ofthe hydrophobic phenyl, and cyclohexyl rings of hexahydro-difenidol for the stereoselectivity and reeeptor selectivity of hexahydro-difenidol binding to the four muscarinic receptors. Our results indieated that replacement of the phenyl ring of hexahydro-difenidol by a cyclohexyl group <~ dicyclidol) and ofthe cyclohexyl ring by a phenyl moiety <~ difenidol) indueed a !arge (4- to 80-fold) decrease in binding affinity for all musearlnie receptors. Difenidol had a signifieant preference for M\(_1\) , M\(_3\) , and M\(_4\) over M\(_2\) receptors; dicyclidol, by eontrast, had a greater affinity for M\(_1\) and M\(_4\) than for M\(_2\) and M\(_3\) receptors. The binding free energy deerease due to replacement ofthe phenyl and the cyelohexyl groups of(R)-hexahydro-difenidol by, respectively, a eyclohexyl and a phenyl moiety was almostadditive in the ease of M\(_4\) (striatum) binding sites. In the ease ofthe cardiac M\(_2\), pancreatic M\(_3\) , or NB-OK 1 M\(_1\) receptors the respective binding free energies were not eompletely additive. These results suggest that the four (R)-hexahydro-difenidol ''binding moieties" (phenyl, cyclohexyl, hydroxy, and protonated amino group) cannot simultaneously form optimal interaetions with the M\(_1\), M\(_2\), and M\(_3\) muscarinic receptors. When eaeh of the hydrophobic groups is modified, the position of the whole molecule, relative to the four subsites, was changed to allow an optimal overall interaction with the musearlnie receptor. KW - Anorganische Chemie KW - hexahydro-difenidol enantiomers KW - muscarinic receptor subtypes KW - stereoselective interaction KW - difenidol KW - dicyclidol Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-64135 ER - TY - JOUR A1 - Waelbroeck, M. A1 - Camus, J. A1 - Tastenoy, M. A1 - Mutschler, E. A1 - Strohmann, C. A1 - Tacke, Reinhold A1 - Lambrecht, G. A1 - Christophe, J. T1 - Binding affinities of hexahydro-difenidol and hexahydro-sila-difenidol analogues at four muscarinic receptor subtypes: constitutional and stereochemical aspects N2 - Hexahydro-sila-difenidoJ and eight analogues behaved as simple cumpetitive inhibitors of eHJN·methyl·scopoJamine binding to homogenates frorn human neuroblastoma NB-OK 1 cells (M\(_1\) sites), rat heart (M\(_2\) sites), rat pancreas (M\(_3\) sites), and rat striatum 'B' sites (M\(_4\) sites). Pyrrolidino- and hexamethyleneimino analogues showed the same sekctivity profile as the parent compound. Hexahydro-sila-difenidol methiodide and the methiodide of p-fluoro-hexahydro·sila-difenidol had a fügher affinity but a lower selectivity than the tertiary amines. Compounds containing a p·methoxy, p-chJoro or p-fluoro substituent in the phenyl ring of hexahydro-sila-difenidol showed a qualitative)y similar selectivity profile as the parent compound (i.e., M\(_1\)= M\(_3\) = M\(_4\) >M\(_2\) ), but up to 16-fold lower affinities. o-Methoxy-hexahydro-sila-difenidol has a lower affinity than hexahydro-sila-difeni.:!o! at the four binding sites. lts selectivity profile (M\(_4\) > M\(_1\), M\(_3\) > M\(_2\) ) was different from hexahydro-sila-difenidol. Replacement of the centrat silicon atom of hexahydro-sila-difenidol, p-fluoro-hexahydro-sila-difenidol and thdr quatemary (N-methylated) analogues by a carbon atom did not change their binding affinities significantly. The iour muscarinic receptors showed a higher affinity for the (R)- than for the (S)-enantiomers of hexahydro-difenidol, p-fluorohexahydro-difenidol and their methiodides. The stereoselectivity varied depending on the receptor subtype and drug considered. KW - Anorganische Chemie KW - Muscarinic receptor antagonists (selective) KW - Hexahydro-sila-difenidol analogues KW - p-Fluoro-hexahydro-sila-difenidol KW - Stereoselectivity Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-64128 ER -