TY - THES A1 - Zavala Góngora, Ricardo T1 - Isolierung, Charakterisierung und Funktionsanalyse von TGF-Beta-Signaltransduktionskomponenten des Fuchsbandwurms Echinococcus multilocularis T1 - Structural and functional characterization of TGFß signaling systems in Echinococcus multilocularis N2 - Die molekularen Mechanismen der Wirt-Parasit-Interaktion bei der durch den Zestoden Echinococcus multilocularis ausgelösten Erkrankung der alveolären Echinokokkose sind bislang ungeklärt. Zudem liegen keine Daten über Entwicklungs- und Differenzierungsmechanismen dieses Parasiten vor, die für die Entwicklung neuer Antiparasitika genutzt werden könnten. Ein bei der Evolution der Metazoen bereits frühzeitig entstandener Signaltransduktionsmechanismus zur Steuerung von Entwicklungsvorgängen ist das TGFβ/BMP-System, das aus strukturell verwandten Zytokinen der TGFβ (transforming growth factor β) bzw. BMP (bone morphogenetic protein)-Familie, oberflächenständigen Rezeptoren der TGFβ-Rezeptorfamilie (Typ I und Typ II) und intrazellulären Signaltransduktoren der Smad-Familie besteht. Außer an Entwicklungsvorgängen tierischer Organismen könnte diesem System eine wichtige Rolle bei der Wirt-Helminth-Kommunikation während Infektionsprozessen zukommen, wie in vorherigen Studien am Nematoden Brugia malayi und am Trematoden Schistosoma mansoni gezeigt werden konnte. Erste, wichtige Schritte zur Charakterisierung von TGFβ und BMP-Signalsystemen in Zestoden wurden in der vorliegenden Arbeit getan. Aufbauend auf einem vorherigen Bericht zu einem Transmembranrezeptor (EmRSK1) und einem Smad-Homologen (EmSmadA) aus Echinococcus multilocularis wurde die Liste der TGFβ/BMP Signaltransduktionsfaktoren in E. multilocularis in dieser Arbeit deutlich erweitert und erstmals umfangreiche funktionelle Studien durchgeführt. Die hier charakterisierten Faktoren umfassen zwei weitere Serin/Threonin-Kinasen der TGFβ/BMP-Rezeptorfamilie (EmRSK2, EmRSK3) sowie intrazelluläre Transduktoren der R-Smad-Subfamilie (EmSmadB, EmSmadC) und ein Homologes zur MAP-kinase-kinase-kinase TAK1 (TGFβ activated kinase 1), genannt EmTAK1. Zudem konnte erstmals für einen parasitären Helminthen ein Zytokin der BMP-Subfamilie, EmBMP, auf molekularer Ebene charakterisiert werden. Strukturelle und funktionelle Untersuchungen legen nahe, dass E. multilocularis sowohl ein TGFβ wie auch ein BMP-Signalsystem exprimiert. Ersteres wird sehr wahrscheinlich durch die Kinase EmRSK2 und den Smad-Faktor EmSmadC gebildet, letzteres durch EmRSK1 und EmSmadB. EmSmadA nimmt eine Sonderstellung ein, da es sowohl durch TGFβ- wie auch durch BMP-Rezeptoren aktiviert werden kann. Die genaue Rolle von EmRSK1 und EmTAK1 wäre durch weitere Untersuchungen zu klären. Signifikante funktionelle Homologien zwischen den TGFβ/BMP-Signalsystemen des Parasiten und Säugern konnten nachgewiesen werden, die sich u.a. darin äußern, dass die Echinococcus Smad-Proteine durch entsprechende Rezeptoren des Menschen aktiviert werden können. Darüber hinaus konnten jedoch auch einige deutliche Unterschiede zwischen den Systemen aus Parasit und Wirt nachgewiesen werden, die sich als Angriffspunkte zur Entwicklung von Chemotherapeutika eignen könnten. So fehlt den Smad-Faktoren EmSmadA und EmSmadC eine MH1-Domäne, die sonst unter allen R-Smads hoch konserviert ist. Zudem sind einige bislang noch nie beschriebene, strukturelle Besonderheiten der Echinococcus TGFβ/BMP-Rezeptoren zu verzeichnen. Auch die Regulation dieser Faktoren und die Kreuz-Interaktion mit weiteren intrazellulären Signalwegen (z.B. der MAP Kinase Kaskade) scheint in E. multilocularis anders zu verlaufen als bislang für Vertebraten, Insekten oder Nematoden beschrieben. Schließlich konnte, als sehr wichtiger Befund, auch nachgewiesen werden dass mindestens ein Rezeptor des Parasiten, EmRSK1, mit einem Zytokin des Wirts (BMP2) in vitro funktionell interagiert. Da BMP2 in Zellkultursystemen, die das Wachstum des Parasiten am befallenen Wirtsorgan nachstellen, einen deutlichen Effekt auf E. multilocularis ausübt, könnte die hier beschriebene EmRSK1/BMP2 – Interaktion von entscheidender Bedeutung für die Wirt-Parasit-Interaktion bei der alveolären Echinokokkose sein. N2 - Up to now, the molecular mechanisms of the interactions between host and parasite in the disease of alveolar echinococcosis, caused by the cestode Echinococcus multilocularis, are not understood. Furthermore there are not data available about the mechanisms of development and differentiation in this parasite that could be used for the design of novel antiinfectives. One of the signaling systems which emerged very early in metazoan evolution and which presumably controls developmental processes in all animals is the TGFβ signal transduction system. This system consists of various factors: structurally related cytokines of the TGFβ (transforming growth factor β) and the BMP (bone morphogenetic protein) family, surface associated receptors of the TGFβ receptor family (type I and type II) and intracellular signal transduction factors of the Smad family. In addition to their crucial role in animal development, TGFβ/BMP systems could also play an important role in the communication between host and helminths during an infection, as has been shown previous studies on the nematode Brugia malayi and the trematode Schistosoma mansoni. In this study, the initial steps towards a characterization of TGFβ/BMP signaling in the third large group of parasitic helminths, the cestodes, have been made. Adding to a previous report on a transmembrane receptor (EmRSK1) and a Smad homologue (EmSmadA) from E. multilocularis, this work significantly extends the list of known TGFβ/BMP signaling factors from Echinococcus and provides, for the first time, functional studies on these systems. The newly characterized factors comprise two further serin/threonin kinases of the TGFβ/BMP receptor family (EmRSK2, EmRSK3), two further intracellular transducing factors belonging to the subfamiliy of R-smads (EmSmadB, EmSmadC) and one homologue of the MAP-kinase-kinase-kinase TAK1 (TGFβ activated kinase 1), which was designated EmTAK1. Furthermore, and for the first time in a parasitic helminth, a cytokine of the BMP subfamily was characterized on the molecular level. Structural and functional studies suggested that E. multilocularis expresses both a TGFβ and a BMP signaling system. The kinase EmRSK2 and the Smad factor EmSmadC are most probably components of the first, EmRSK1 and EmSmadB parts of the latter system. Surprisingly, EmSmadA seems to constitute an unusual Smad since it can be activated by both TGFβ and the BMP receptors upon expression in mammalian cells. The precise roles of EmRSK3 and EmTAK1 have to be determined in future studies. In the present work, significant structural and functional homologies between the TGFβ/BMP systems of E. multilocularis and its mammalian hosts have been detected. Upon expression in human cells, the Echinococcus Smad proteins were, for example, able to functionally interact with the corresponding receptors from Homo sapiens. On the other hand, the E. multilocularis TGFβ/BMP signaling factors also displayed several biochemical differences to those of the host, which could be exploited for the development of antiparasitic drugs. One of these differences is the lack of a usually conserved MH1 domain in EmSmadA and EmSmadC. Moreover, the Echinococcus TGFβ/BMP receptors display several structural features which have not yet been detected in other members of the protein superfamily. Likewise, the regulation of TGFβ/BMP pathways in Echinococcus as well as their cross-interaction with other signaling pathways (e.g. the MAP kinase cascade) seems to differ from the situation in vertebrates, insects and nematodes. Finally, this work also provides evidence that at least one host cytokine, BMP-2, can functionally interact with a receptor of the parasite, EmRSK1. This interaction could be highly relevant for host-parasite interaction mechanisms in alveolar echinococcosis since BMP-2 also exerts clear effects on Echinococcus growth and differentiation in an in vitro cultivation system that mimicks the situation at the affected organ during an infection. KW - Fuchsbandwurm KW - Ontogenie KW - Signaltransduktion KW - Echinococcus KW - TGFß KW - BMP KW - Smad KW - Zestode KW - Echinococcus KW - TGFß KW - BMP KW - Smad KW - cestode Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-17755 ER - TY - THES A1 - Groh, Claudia T1 - Environmental influences on the development of the female honeybee brain Apis mellifera T1 - Der Einfluss von Umweltfaktoren auf die Entwicklung des Gehirns der weiblichen Honigbiene Apis mellifera N2 - Für die Honigbiene spielt der Geruchssinn eine entscheidende Rolle bei der Kommunikation innerhalb des Sozialstaates. Kastenspezifische, auf uweltbedingten Einflüssen basierende sowie altersbedingte Unterschiede im olfaktorisch gesteuerten Verhalten liefern ein hervorragendes Modellsystem für diese Studie, um die Entwicklung und Funktion neuronaler Plastizität im olfaktorischen System zu untersuchen. Diese Studie konzentriert sich auf Unterschiede zwischen Königinnen und Arbeiterinnen, den beiden weiblichen Kasten innerhalb des Bienestaates, sowie auf umweltbedingte Plastizität. Diploide Eier, aus denen sich Königinnen und Arbeiterinnen entwickeln, sind genetisch identisch. Dennoch entwickeln sich Königinnen wesentlich schneller zum Adulttier als Arbeiterinnen, sind als Imago größer, leben wesentlich länger und zeigen andere Verhaltensweisen. Diese Unterschiede werden durch eine differentielle larvale Fütterung initiiert. Im Anschluss an das Larvenstadium und somit nach erfolgter Kastendetermination, entwickeln sich die Bienen über eine Puppenphase (verdeckelte Phase) zum Imago. Adulte Bienen klimatisieren das zentrale Brutareal auf einer mittleren Temperatur von 35°C konstant. Bienen, die bei niedrigeren Temperaturen innerhalb des physiologisch relevanten Bereichs aufwachsen, weisen Defizite im olfaktorischen Lernverhalten und in der Tanzkommunikation auf. Mögliche neuronale Korrelate für altersbedingte, temperatur- und kastenspezifische Unterschiede im olfaktorisch gesteuerten Verhalten sollten in dieser Arbeit betrachtet werden. Die strukturellen Analysen konzentrierten sich dabei auf primäre (Antennalloben) und sekundäre (Pilzkörper-Calyces)olfaktorische Verarbeitungszentren im Gehirn von sich entwickelnden und adulten Tieren beider Kasten. Synchron verdeckelte Brutzellen beider Kasten wurden unter kontrollierten Bedingungen im Inkubator herangezogen. Neuroanatomische Untersuchungen wurden an fixierten Gewebeschnitten mittels einer Doppelfluoreszenzfärbung mit Fluor-Phalloidin und anti-Synapsin Immuncytochemie durchgeführt. Diese Doppelmarkierung ermöglichte die Visualisierung und Quantifizierung individueller Synapsenkomplexe (Microglomeruli) im Pilzkörper-Calyx. Phalloidin bindet an verschiedene F-Aktin Isoformen und kann zum Nachweis von F-Aktin im Insektennervensystem verwendet werden. F-Aktin wird während der Entwicklung in Wachstumskegeln und in adulten Gehirnen in präsynaptischen Endigungen und dendritischen Dornen exprimiert. Präsynaptische Elemente wurden durch den Einsatz eines spezifischen Antikörpers gegen das Drosophila-Vesikeltransportprotein Synapsin I charakterisiert. Mit Hilfe der konfokalen Laser-Scanning Mikroskopie wurde die exakte räumliche Zuordnung der Fluoreszenzsignale anhand optischer Schnitte durch die Präparate realisiert. Anhand dieser Methodik konnten erstmals über reine Volumenanalysen hinausgehende Messungen zur synaptischen Strukturplastizität im Pilzkörper-Calyx durchgeführt werden. Die Untersuchungen an Gehirnen in den verschiedenen Puppenstadien zeigten Unterschiede im Entwicklungsverlauf der Gehirne mit dem Fokus auf die Bildung antennaler Glomeruli und calycaler Microglomeruli. Unterschiede in der Gehirnentwicklung verdeutlichten die ontogenetische Plastizität des Gehirns der Honigbiene. Entsprechend der kürzeren Puppenphase der Königinnen bildeten sich sowohl antennale Glomeruli als auch alle Untereinheiten (Lippe, Collar, Basalring) des Calyx etwa drei Tage früher aus. Direkt nach dem Schlupf zeigten quantitative Analysen innerhalb der Pilzkörper-Calyces eine signifikant geringere Anzahl an Microglomeruli bei Königinnen. Diese neuronale Strukturplastizität auf verschiedenen Ebenen der olfaktorischen Informationsverarbeitung korreliert mit der kastenspezifischen Arbeitsteilung. Die Arbeit liefert Erkenntnisse über den Einfluss eines wichtigen kontrollierten Umweltparameters, der Bruttemperatur, während der Puppenphase auf die synaptische Organisation der adulten Pilzkörper-Calyces. Bereits geringe Unterschiede in der Aufzuchtstemperatur (1°C) beeinflussten signifikant die Anzahl von Microglomeruli in der Lippenregion des Calyx beider weiblicher Kasten. Die maximale Anzahl an MG entwickelte sich bei Arbeiterinnen bei 34.5°C, bei Königinnen aber bei 33.5°C. Neben dieser entwicklungsbedingten neuronalen Plastizität zeigt diese Studie eine starke altersbedingte Strukturplastizität der MG während der relativ langen Lebensdauer von Bienenköniginnen. Hervorzuheben ist, dass die Anzahl an MG in der olfaktorischen Lippenregion mit dem Alter anstieg (~55%), in der angrenzenden visuellen Collarregion jedoch abnahm (~33%). Die in der vorliegenden Arbeite erstmals gezeigte umweltbedingte Entwicklungsplastizität sowie altersbedingte synaptische Strukturplastizität in den sensorischen Eingangsregionen der Pilzkörper-Calyces könnte kasten- und altersspezifischen Anpassungen im Verhalten zugrunde liegen. N2 - Olfaction plays an important role in a variety of behaviors throughout the life of the European honeybee. Caste specific, environmentally induced and aging/experiencedependent differences in olfactory behavior represent a promising model to investigate mechanisms and consequences of phenotypic neuronal plasticity within the olfactory pathway of bees. This study focuses on the two different female phenotypes within the honeybee society, queens and workers. In this study, for the first time, structural plasticity in the honeybee brain was investigated at the synaptic level. Queens develop from fertilized eggs that are genetically not different from those that develop into workers. Adult queens are larger than workers, live much longer, and display different behaviors. Developmental trajectory is mainly determined by nutritional factors during the larval period. Within the subsequent post-capping period, brood incubation is precisely controlled, and pupae are incubated close to 35°C via thermoregulatory activity of adult workers. Behavioral studies suggest that lower rearing temperatures cause deficits in olfactory learning in adult bees. To unravel possible neuronal correlates for thermoregulatory and caste dependent influences on olfactory behavior, I examined structural plasticity of developing as well as mature olfactory synaptic neuropils. Brood cells were reared in incubators and pupal as well as adult brains were dissected for immunofluorescent staining. To label synaptic neuropils, I used an antibody to synapsin and fluophore-conjugated phalloidin which binds to filamentous (F-) actin. During development, neuronal F-actin is expressed in growing neurons, and in the mature nervous system, F-actin is most abundant in presynaptic terminals and dendritic spines. In the adult brains, this double labeling technique enables the quantification of distinct synaptic complexes microglomeruli [MG]) within olfactory and visual input regions of the mushroom bodies (MBs) prominent higher sensory integration centers. Analyses during larval-adult metamorphosis revealed that the ontogenetic plasticity in the female castes is reflected in the development of the brain. Distinct differences among the timing of the formation of primary and secondary olfactory neuropils were also revealed. These differences at different levels of the olfactory pathway in queens and workers correlate with differences in tasks performed by both female castes. In addition to caste specific differences, thermoregulation of sealed brood cells has important consequences on the synaptic organization within the MB calyces of adult workers and queens. Even small differences in rearing temperatures affected the number of MG in the olfactory calyx lip regions. In queens, the highest number of MG in the olfactory lip developed at 1°C below the temperature where the maximum of MG is found in workers (33.5 vs. 34.5°C). Apart from this developmental neuronal plasticity, this study exhibits a striking age-related plasticity of MG throughout the extended life span of queens. Interestingly, MG numbers in the olfactory lip increased with age, but decreased within the adjacent visual collar of the MB calyx. To conclude, developmental and adult plasticity of the synaptic circuitry in the sensory input regions of the MB calyx may underlie caste- and age-specific adaptations and long-term plasticity in behavior. KW - Biene KW - Neuroethologie KW - Geruchswahrnehmung KW - Gehirn KW - Ontogenie KW - Neuroethologie KW - Pilzkörper KW - Strukturplastizität KW - Mikroglomerulus KW - Honigbiene KW - soziale Insekten KW - neuroethology KW - mushroom body KW - structural plasticity KW - microglomerulus KW - honeybee KW - social insects Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-17388 ER -