TY - JOUR A1 - Lange, Florian A1 - Steigerwald, Frank A1 - Malzacher, Tobias A1 - Brandt, Gregor Alexander A1 - Odorfer, Thorsten Michael A1 - Roothans, Jonas A1 - Reich, Martin M. A1 - Fricke, Patrick A1 - Volkmann, Jens A1 - Matthies, Cordula A1 - Capetian, Philipp D. T1 - Reduced Programming Time and Strong Symptom Control Even in Chronic Course Through Imaging-Based DBS Programming JF - Frontiers in Neurology N2 - Objectives: Deep brain stimulation (DBS) programming is based on clinical response testing. Our clinical pilot trial assessed the feasibility of image-guided programing using software depicting the lead location in a patient-specific anatomical model. Methods: Parkinson's disease patients with subthalamic nucleus-DBS were randomly assigned to standard clinical-based programming (CBP) or anatomical-based (imaging-guided) programming (ABP) in an 8-week crossover trial. Programming characteristics and clinical outcomes were evaluated. Results: In 10 patients, both programs led to similar motor symptom control (MDS-UPDRS III) after 4 weeks (medicationOFF/stimulationON; CPB: 18.27 ± 9.23; ABP: 18.37 ± 6.66). Stimulation settings were not significantly different, apart from higher frequency in the baseline program than CBP (p = 0.01) or ABP (p = 0.003). Time spent in a program was not significantly different (CBP: 86.1 ± 29.82%, ABP: 88.6 ± 29.0%). Programing time was significantly shorter (p = 0.039) with ABP (19.78 ± 5.86 min) than CBP (45.22 ± 18.32). Conclusion: Image-guided DBS programming in PD patients drastically reduces programming time without compromising symptom control and patient satisfaction in this small feasibility trial. KW - directional deep brain stimulation KW - image-guided programming KW - subthalamic nucleus KW - chronic stimulation KW - randomized controlled double-blind study KW - Parkinson's disease Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249634 SN - 1664-2295 VL - 12 ER - TY - JOUR A1 - Mencacci, Niccoló E. A1 - Isaias, Ioannis U. A1 - Reich, Martin M. A1 - Ganos, Christos A1 - Plagnol, Vincent A1 - Polke, James M. A1 - Bras, Jose A1 - Hersheson, Joshua A1 - Stamelou, Maria A1 - Pittman, Alan M. A1 - Noyce, Alastair J. A1 - Mok, Kin Y. A1 - Opladen, Thomas A1 - Kunstmann, Erdmute A1 - Hodecker, Sybille A1 - Münchau, Alexander A1 - Volkmann, Jens A1 - Samnick, Samuel A1 - Sidle, Katie A1 - Nanji, Tina A1 - Sweeney, Mary G. A1 - Houlden, Henry A1 - Batla, Amit A1 - Zecchinelli, Anna L. A1 - Pezzoli, Gianni A1 - Marotta, Giorgio A1 - Lees, Andrew A1 - Alegria, Paulo A1 - Krack, Paul A1 - Cormier-Dequaire, Florence A1 - Lesage, Suzanne A1 - Brice, Alexis A1 - Heutink, Peter A1 - Gasser, Thomas A1 - Lubbe, Steven J. A1 - Morris, Huw R. A1 - Taba, Pille A1 - Koks, Sulev A1 - Majounie, Elisa A1 - Gibbs, J. Raphael A1 - Singleton, Andrew A1 - Hardy, John A1 - Klebe, Stephan A1 - Bhatia, Kailash P. A1 - Wood, Nicholas W. T1 - Parkinson’s disease in GTP cyclohydrolase 1 mutation carriers JF - Brain N2 - GTP cyclohydrolase 1, encoded by the GCH1 gene, is an essential enzyme for dopamine production in nigrostriatal cells. Loss-of-function mutations in GCH1 result in severe reduction of dopamine synthesis in nigrostriatal cells and are the most common cause of DOPA-responsive dystonia, a rare disease that classically presents in childhood with generalized dystonia and a dramatic long-lasting response to levodopa. We describe clinical, genetic and nigrostriatal dopaminergic imaging ([(123)I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) tropane single photon computed tomography) findings of four unrelated pedigrees with DOPA-responsive dystonia in which pathogenic GCH1 variants were identified in family members with adult-onset parkinsonism. Dopamine transporter imaging was abnormal in all parkinsonian patients, indicating Parkinson's disease-like nigrostriatal dopaminergic denervation. We subsequently explored the possibility that pathogenic GCH1 variants could contribute to the risk of developing Parkinson's disease, even in the absence of a family history for DOPA-responsive dystonia. The frequency of GCH1 variants was evaluated in whole-exome sequencing data of 1318 cases with Parkinson's disease and 5935 control subjects. Combining cases and controls, we identified a total of 11 different heterozygous GCH1 variants, all at low frequency. This list includes four pathogenic variants previously associated with DOPA-responsive dystonia (Q110X, V204I, K224R and M230I) and seven of undetermined clinical relevance (Q110E, T112A, A120S, D134G, I154V, R198Q and G217V). The frequency of GCH1 variants was significantly higher (Fisher's exact test P-value 0.0001) in cases (10/1318 = 0.75%) than in controls (6/5935 = 0.1%; odds ratio 7.5; 95% confidence interval 2.4-25.3). Our results show that rare GCH1 variants are associated with an increased risk for Parkinson's disease. These findings expand the clinical and biological relevance of GTP cycloydrolase 1 deficiency, suggesting that it not only leads to biochemical striatal dopamine depletion and DOPA-responsive dystonia, but also predisposes to nigrostriatal cell loss. Further insight into GCH1-associated pathogenetic mechanisms will shed light on the role of dopamine metabolism in nigral degeneration and Parkinson's disease. KW - DOPA-responsive-dystonia KW - GCH1 KW - Parkinson's disease KW - dopamine KW - exome sequencing Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121268 VL - 137 IS - 9 ER -