TY - JOUR A1 - Janz, Anna A1 - Walz, Katharina A1 - Cirnu, Alexandra A1 - Surjanto, Jessica A1 - Urlaub, Daniela A1 - Leskien, Miriam A1 - Kohlhaas, Michael A1 - Nickel, Alexander A1 - Brand, Theresa A1 - Nose, Naoko A1 - Wörsdörfer, Philipp A1 - Wagner, Nicole A1 - Higuchi, Takahiro A1 - Maack, Christoph A1 - Dudek, Jan A1 - Lorenz, Kristina A1 - Klopocki, Eva A1 - Ergün, Süleyman A1 - Duff, Henry J. A1 - Gerull, Brenda T1 - Mutations in DNAJC19 cause altered mitochondrial structure and increased mitochondrial respiration in human iPSC-derived cardiomyocytes JF - Molecular Metabolism N2 - Highlights • Loss of DNAJC19's DnaJ domain disrupts cardiac mitochondrial structure, leading to abnormal cristae formation in iPSC-CMs. • Impaired mitochondrial structures lead to an increased mitochondrial respiration, ROS and an elevated membrane potential. • Mutant iPSC-CMs show sarcomere dysfunction and a trend to more arrhythmias, resembling DCMA-associated cardiomyopathy. Background Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from truncating mutations in DNAJC19, which encodes an inner mitochondrial membrane protein. Clinical features include an early onset, often life-threatening, cardiomyopathy associated with other metabolic features. Here, we aim to understand the metabolic and pathophysiological mechanisms of mutant DNAJC19 for the development of cardiomyopathy. Methods We generated induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) of two affected siblings with DCMA and a gene-edited truncation variant (tv) of DNAJC19 which all lack the conserved DnaJ interaction domain. The mutant iPSC-CMs and their respective control cells were subjected to various analyses, including assessments of morphology, metabolic function, and physiological consequences such as Ca\(^{2+}\) kinetics, contractility, and arrhythmic potential. Validation of respiration analysis was done in a gene-edited HeLa cell line (DNAJC19tv\(_{HeLa}\)). Results Structural analyses revealed mitochondrial fragmentation and abnormal cristae formation associated with an overall reduced mitochondrial protein expression in mutant iPSC-CMs. Morphological alterations were associated with higher oxygen consumption rates (OCRs) in all three mutant iPSC-CMs, indicating higher electron transport chain activity to meet cellular ATP demands. Additionally, increased extracellular acidification rates suggested an increase in overall metabolic flux, while radioactive tracer uptake studies revealed decreased fatty acid uptake and utilization of glucose. Mutant iPSC-CMs also showed increased reactive oxygen species (ROS) and an elevated mitochondrial membrane potential. Increased mitochondrial respiration with pyruvate and malate as substrates was observed in mutant DNAJC19tv HeLa cells in addition to an upregulation of respiratory chain complexes, while cellular ATP-levels remain the same. Moreover, mitochondrial alterations were associated with increased beating frequencies, elevated diastolic Ca\(^{2+}\) concentrations, reduced sarcomere shortening and an increased beat-to-beat rate variability in mutant cell lines in response to β-adrenergic stimulation. Conclusions Loss of the DnaJ domain disturbs cardiac mitochondrial structure with abnormal cristae formation and leads to mitochondrial dysfunction, suggesting that DNAJC19 plays an essential role in mitochondrial morphogenesis and biogenesis. Moreover, increased mitochondrial respiration, altered substrate utilization, increased ROS production and abnormal Ca\(^{2+}\) kinetics provide insights into the pathogenesis of DCMA-related cardiomyopathy. KW - cell biology KW - molecular biology KW - dilated cardiomyopathy with ataxia KW - genetics KW - metabolism KW - mitochondria KW - OXPHOS KW - ROS KW - contractility Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350393 SN - 2212-8778 VL - 79 ER - TY - JOUR A1 - Schanbacher, Constanze A1 - Hermanns, Heike M. A1 - Lorenz, Kristina A1 - Wajant, Harald A1 - Lang, Isabell T1 - Complement 1q/tumor necrosis factor-related proteins (CTRPs): structure, receptors and signaling JF - Biomedicines N2 - Adiponectin and the other 15 members of the complement 1q (C1q)/tumor necrosis factor (TNF)-related protein (CTRP) family are secreted proteins composed of an N-terminal variable domain followed by a stalk region and a characteristic C-terminal trimerizing globular C1q (gC1q) domain originally identified in the subunits of the complement protein C1q. We performed a basic PubMed literature search for articles mentioning the various CTRPs or their receptors in the abstract or title. In this narrative review, we briefly summarize the biology of CTRPs and focus then on the structure, receptors and major signaling pathways of CTRPs. Analyses of CTRP knockout mice and CTRP transgenic mice gave overwhelming evidence for the relevance of the anti-inflammatory and insulin-sensitizing effects of CTRPs in autoimmune diseases, obesity, atherosclerosis and cardiac dysfunction. CTRPs form homo- and heterotypic trimers and oligomers which can have different activities. The receptors of some CTRPs are unknown and some receptors are redundantly targeted by several CTRPs. The way in which CTRPs activate their receptors to trigger downstream signaling pathways is largely unknown. CTRPs and their receptors are considered as promising therapeutic targets but their translational usage is still hampered by the limited knowledge of CTRP redundancy and CTRP signal transduction. KW - adiponectin KW - AMPK KW - C1q/TNF related protein (CTRP) KW - inflammation KW - metabolism Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304136 SN - 2227-9059 VL - 11 IS - 2 ER - TY - JOUR A1 - Schanbacher, Constanze A1 - Bieber, Michael A1 - Reinders, Yvonne A1 - Cherpokova, Deya A1 - Teichert, Christina A1 - Nieswandt, Bernhard A1 - Sickmann, Albert A1 - Kleinschnitz, Christoph A1 - Langhauser, Friederike A1 - Lorenz, Kristina T1 - ERK1/2 activity is critical for the outcome of ischemic stroke JF - International Journal of Molecular Sciences N2 - Ischemic disorders are the leading cause of death worldwide. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are thought to affect the outcome of ischemic stroke. However, it is under debate whether activation or inhibition of ERK1/2 is beneficial. In this study, we report that the ubiquitous overexpression of wild-type ERK2 in mice (ERK2\(^{wt}\)) is detrimental after transient occlusion of the middle cerebral artery (tMCAO), as it led to a massive increase in infarct volume and neurological deficits by increasing blood–brain barrier (BBB) leakiness, inflammation, and the number of apoptotic neurons. To compare ERK1/2 activation and inhibition side-by-side, we also used mice with ubiquitous overexpression of the Raf-kinase inhibitor protein (RKIP\(^{wt}\)) and its phosphorylation-deficient mutant RKIP\(^{S153A}\), known inhibitors of the ERK1/2 signaling cascade. RKIP\(^{wt}\) and RKIP\(^{S153A}\) attenuated ischemia-induced damages, in particular via anti-inflammatory signaling. Taken together, our data suggest that stimulation of the Raf/MEK/ERK1/2-cascade is severely detrimental and its inhibition is rather protective. Thus, a tight control of the ERK1/2 signaling is essential for the outcome in response to ischemic stroke. KW - ERK1/2 KW - tMCAO KW - ischemic stroke KW - RKIP Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-283991 SN - 1422-0067 VL - 23 IS - 2 ER - TY - JOUR A1 - Wagner, Michael A1 - Sadek, Mirna S. A1 - Dybkova, Nataliya A1 - Mason, Fleur E. A1 - Klehr, Johann A1 - Firneburg, Rebecca A1 - Cachorro, Eleder A1 - Richter, Kurt A1 - Klapproth, Erik A1 - Kuenzel, Stephan R. A1 - Lorenz, Kristina A1 - Heijman, Jordi A1 - Dobrev, Dobromir A1 - El-Armouche, Ali A1 - Sossalla, Samuel A1 - Kämmerer, Susanne T1 - Cellular mechanisms of the anti-arrhythmic effect of cardiac PDE2 overexpression JF - International Journal of Molecular Sciences N2 - Background: Phosphodiesterases (PDE) critically regulate myocardial cAMP and cGMP levels. PDE2 is stimulated by cGMP to hydrolyze cAMP, mediating a negative crosstalk between both pathways. PDE2 upregulation in heart failure contributes to desensitization to β-adrenergic overstimulation. After isoprenaline (ISO) injections, PDE2 overexpressing mice (PDE2 OE) were protected against ventricular arrhythmia. Here, we investigate the mechanisms underlying the effects of PDE2 OE on susceptibility to arrhythmias. Methods: Cellular arrhythmia, ion currents, and Ca\(^{2+}\)-sparks were assessed in ventricular cardiomyocytes from PDE2 OE and WT littermates. Results: Under basal conditions, action potential (AP) morphology were similar in PDE2 OE and WT. ISO stimulation significantly increased the incidence of afterdepolarizations and spontaneous APs in WT, which was markedly reduced in PDE2 OE. The ISO-induced increase in I\(_{CaL}\) seen in WT was prevented in PDE2 OE. Moreover, the ISO-induced, Epac- and CaMKII-dependent increase in I\(_{NaL}\) and Ca\(^{2+}\)-spark frequency was blunted in PDE2 OE, while the effect of direct Epac activation was similar in both groups. Finally, PDE2 inhibition facilitated arrhythmic events in ex vivo perfused WT hearts after reperfusion injury. Conclusion: Higher PDE2 abundance protects against ISO-induced cardiac arrhythmia by preventing the Epac- and CaMKII-mediated increases of cellular triggers. Thus, activating myocardial PDE2 may represent a novel intracellular anti-arrhythmic therapeutic strategy in HF. KW - PDE2 KW - arrhythmia KW - CaMKII KW - heart failure Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285888 SN - 1422-0067 VL - 22 IS - 9 ER - TY - JOUR A1 - Breitenbach, Tim A1 - Lorenz, Kristina A1 - Dandekar, Thomas T1 - How to steer and control ERK and the ERK signaling cascade exemplified by looking at cardiac insufficiency JF - International Journal of Molecular Sciences N2 - Mathematical optimization framework allows the identification of certain nodes within a signaling network. In this work, we analyzed the complex extracellular-signal-regulated kinase 1 and 2 (ERK1/2) cascade in cardiomyocytes using the framework to find efficient adjustment screws for this cascade that is important for cardiomyocyte survival and maladaptive heart muscle growth. We modeled optimal pharmacological intervention points that are beneficial for the heart, but avoid the occurrence of a maladaptive ERK1/2 modification, the autophosphorylation of ERK at threonine 188 (ERK\(^{Thr188}\) phosphorylation), which causes cardiac hypertrophy. For this purpose, a network of a cardiomyocyte that was fitted to experimental data was equipped with external stimuli that model the pharmacological intervention points. Specifically, two situations were considered. In the first one, the cardiomyocyte was driven to a desired expression level with different treatment strategies. These strategies were quantified with respect to beneficial effects and maleficent side effects and then which one is the best treatment strategy was evaluated. In the second situation, it was shown how to model constitutively activated pathways and how to identify drug targets to obtain a desired activity level that is associated with a healthy state and in contrast to the maleficent expression pattern caused by the constitutively activated pathway. An implementation of the algorithms used for the calculations is also presented in this paper, which simplifies the application of the presented framework for drug targeting, optimal drug combinations and the systematic and automatic search for pharmacological intervention points. The codes were designed such that they can be combined with any mathematical model given by ordinary differential equations. KW - optimal pharmacological modulation KW - efficient intervention points KW - ERK signaling KW - optimal treatment strategies KW - optimal drug targeting KW - optimal drug combination Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285164 SN - 1422-0067 VL - 20 IS - 9 ER - TY - JOUR A1 - Salinger, Tim A1 - Hu, Kai A1 - Liu, Dan A1 - Taleh, Scharoch A1 - Herrmann, Sebastian A1 - Oder, Daniel A1 - Gensler, Daniel A1 - Müntze, Jonas A1 - Ertl, Georg A1 - Lorenz, Kristina A1 - Frantz, Stefan A1 - Weidemann, Frank A1 - Nordbeck, Peter T1 - Association between Comorbidities and Progression of Transvalvular Pressure Gradients in Patients with Moderate and Severe Aortic Valve Stenosis JF - Cardiology Research and Practice N2 - Background. Fast progression of the transaortic mean gradient (P-mean) is relevant for clinical decision making of valve replacement in patients with moderate and severe aortic stenosis (AS) patients. However, there is currently little knowledge regarding the determinants affecting progression of transvalvular gradient in AS patients. Methods. This monocentric retrospective study included consecutive patients presenting with at least two transthoracic echocardiography examinations covering a time interval of one year or more between April 2006 and February 2016 and diagnosed as moderate or severe aortic stenosis at the final echocardiographic examination. Laboratory parameters, medication, and prevalence of eight known cardiac comorbidities and risk factors (hypertension, diabetes, coronary heart disease, peripheral artery occlusive disease, cerebrovascular disease, renal dysfunction, body mass index >= 30 Kg/m(2), and history of smoking) were analyzed. Patients were divided into slow (P-mean < 5 mmHg/year) or fast (P-mean >= 5 mmHg/year) progression groups. Results. A total of 402 patients (mean age 78 +/- 9.4 years, 58% males) were included in the study. Mean follow-up duration was 3.4 +/- 1.9 years. The average number of cardiac comorbidities and risk factors was 3.1 +/- 1.6. Average number of cardiac comorbidities and risk factors was higher in patients in slow progression group than in fast progression group (3.3 +/- 1.5 vs 2.9 +/- 1.7; P = 0.036). Patients in slow progression group had more often coronary heart disease (49.2% vs 33.6%; P = 0.003) compared to patients in fast progression group. LDL-cholesterol values were lower in the slow progression group (100 +/- 32.6 mg/dl vs 110.8 +/- 36.6 mg/dl; P = 0.005). Conclusion. These findings suggest that disease progression of aortic valve stenosis is faster in patients with fewer cardiac comorbidities and risk factors, especially if they do not have coronary heart disease. Further prospective studies are warranted to investigate the outcome of patients with slow versus fast progression of transvalvular gradient with regards to comorbidities and risk factors. KW - Valvular heart-desease KW - Prognostic impact KW - Risk-factors KW - Chronic heart-failure KW - Prevalence KW - mild KW - statins KW - therapy KW - mortality Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227291 ER - TY - JOUR A1 - Tolstik, Elen A1 - Ali, Nairveen A1 - Guo, Shuxia A1 - Ebersbach, Paul A1 - Möllmann, Dorothe A1 - Arias-Loza, Paula A1 - Dierks, Johann A1 - Schuler, Irina A1 - Freier, Erik A1 - Debus, Jörg A1 - Baba, Hideo A. A1 - Nordbeck, Peter A1 - Bocklitz, Thomas A1 - Lorenz, Kristina T1 - CARS imaging advances early diagnosis of cardiac manifestation of Fabry disease JF - International Journal of Molecular Sciences N2 - Vibrational spectroscopy can detect characteristic biomolecular signatures and thus has the potential to support diagnostics. Fabry disease (FD) is a lipid disorder disease that leads to accumulations of globotriaosylceramide in different organs, including the heart, which is particularly critical for the patient’s prognosis. Effective treatment options are available if initiated at early disease stages, but many patients are late- or under-diagnosed. Since Coherent anti-Stokes Raman (CARS) imaging has a high sensitivity for lipid/protein shifts, we applied CARS as a diagnostic tool to assess cardiac FD manifestation in an FD mouse model. CARS measurements combined with multivariate data analysis, including image preprocessing followed by image clustering and data-driven modeling, allowed for differentiation between FD and control groups. Indeed, CARS identified shifts of lipid/protein content between the two groups in cardiac tissue visually and by subsequent automated bioinformatic discrimination with a mean sensitivity of 90–96%. Of note, this genotype differentiation was successful at a very early time point during disease development when only kidneys are visibly affected by globotriaosylceramide depositions. Altogether, the sensitivity of CARS combined with multivariate analysis allows reliable diagnostic support of early FD organ manifestation and may thus improve diagnosis, prognosis, and possibly therapeutic monitoring of FD. KW - coherent anti-Stokes Raman scattering (CARS) microscopy KW - Raman micro-spectroscopy KW - cardiovascular diseases KW - Fabry Disease (FD) KW - Gb3 and lyso-Gb3 biomarkers KW - multivariate data analysis KW - immunohistochemistry Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284427 SN - 1422-0067 VL - 23 IS - 10 ER - TY - JOUR A1 - Lorenz, Kristina A1 - Rosner, Marsha Rich T1 - Harnessing RKIP to combat heart disease and cancer JF - Cancers N2 - Cancer and heart disease are leading causes of morbidity and mortality worldwide. These diseases have common risk factors, common molecular signaling pathways that are central to their pathogenesis, and even some disease phenotypes that are interdependent. Thus, a detailed understanding of common regulators is critical for the development of new and synergistic therapeutic strategies. The Raf kinase inhibitory protein (RKIP) is a regulator of the cellular kinome that functions to maintain cellular robustness and prevent the progression of diseases including heart disease and cancer. Two of the key signaling pathways controlled by RKIP are the β-adrenergic receptor (βAR) signaling to protein kinase A (PKA), particularly in the heart, and the MAP kinase cascade Raf/MEK/ERK1/2 that regulates multiple diseases. The goal of this review is to discuss how we can leverage RKIP to suppress cancer without incurring deleterious effects on the heart. Specifically, we discuss: (1) How RKIP functions to either suppress or activate βAR (PKA) and ERK1/2 signaling; (2) How we can prevent cancer-promoting kinase signaling while at the same time avoiding cardiotoxicity. KW - RKIP KW - ERK1/2 KW - PKA KW - βAR KW - heart failure KW - cancer Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262185 SN - 2072-6694 VL - 14 IS - 4 ER - TY - JOUR A1 - Jochmann, Svenja A1 - Elkenani, Manar A1 - Mohamed, Belal A. A1 - Buchholz, Eric A1 - Lbik, Dawid A1 - Binder, Lutz A1 - Lorenz, Kristina A1 - Shah, Ajay M. A1 - Hasenfuß, Gerd A1 - Toischer, Karl A1 - Schnelle, Moritz T1 - Assessing the role of extracellular signal‐regulated kinases 1 and 2 in volume overload‐induced cardiac remodelling JF - ESC Heart Failure N2 - Aims Volume overload (VO) and pressure overload (PO) induce differential cardiac remodelling responses including distinct signalling pathways. Extracellular signal‐regulated kinases 1 and 2 (ERK1/2), key signalling components in the mitogen‐activated protein kinase (MAPK) pathways, modulate cardiac remodelling during pressure overload (PO). This study aimed to assess their role in VO‐induced cardiac remodelling as this was unknown. Methods and results Aortocaval fistula (Shunt) surgery was performed in mice to induce cardiac VO. Two weeks of Shunt caused a significant reduction of cardiac ERK1/2 activation in wild type (WT) mice as indicated by decreased phosphorylation of the TEY (Thr‐Glu‐Tyr) motif (−28% as compared with Sham controls, P < 0.05). Phosphorylation of other MAPKs was unaffected. For further assessment, transgenic mice with cardiomyocyte‐specific ERK2 overexpression (ERK2tg) were studied. At baseline, cardiac ERK1/2 phosphorylation in ERK2tg mice remained unchanged compared with WT littermates, and no overt cardiac phenotype was observed; however, cardiac expression of the atrial natriuretic peptide was increased on messenger RNA (3.6‐fold, P < 0.05) and protein level (3.1‐fold, P < 0.05). Following Shunt, left ventricular dilation and hypertrophy were similar in ERK2tg mice and WT littermates. Left ventricular function was maintained, and changes in gene expression indicated reactivation of the foetal gene program in both genotypes. No differences in cardiac fibrosis and kinase activation was found amongst all experimental groups, whereas apoptosis was similarly increased through Shunt in ERK2tg and WT mice. Conclusions VO‐induced eccentric hypertrophy is associated with reduced cardiac ERK1/2 activation in vivo. Cardiomyocyte‐specific overexpression of ERK2, however, does not alter cardiac remodelling during VO. Future studies need to define the pathophysiological relevance of decreased ERK1/2 signalling during VO. KW - ERK1/2 KW - volume overload KW - aortocaval fistula model KW - cardiac remodelling KW - eccentric hypertrophy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212735 VL - 6 IS - 5 SP - 1015 EP - 1026 ER - TY - JOUR A1 - Propping, Stefan A1 - Lorenz, Kristina A1 - Michel, Martin C. A1 - Wirth, Manfred P. A1 - Ravens, Ursula T1 - beta-Adrenoceptor-mediated Relaxation of Urinary Bladder Muscle in beta 2-Adrenoceptor Knockout Mice JF - Frontiers in Pharmacology N2 - Background and Objective: In order to characterize the β-adrenoceptor (AR) subtypes involved in agonist-stimulated relaxation of murine urinary bladder we studied the effects of (-)-isoprenaline and CL 316,243 on tonic contraction and spontaneous contractions in detrusor strips of wild-type (WT) and β2-AR knockout (β2-AR KO) mice. Materials and Methods: Urinary bladders were isolated from male WT and β2-AR KO mice. β-AR subtype expression was determined with quantitative real-time PCR. Intact muscle strips pre-contracted with KCl (40 mM) were exposed to cumulatively increasing concentrations of (-)-isoprenaline or β3-AR agonist CL 316,243 in the presence and absence of the subtype-selective β-AR blockers CGP 20712A (β1-ARs), ICI 118,551 (β2-ARs), and L748,337 (β3-ARs). Results: Quantitative real-time PCR confirmed lack of β2-AR expression in bladder tissue from β2-AR KO mice. In isolated detrusor strips, pre-contraction with KCl increased basal tone and enhanced spontaneous activity significantly more in β2-AR KO than in WT. (-)-Isoprenaline relaxed tonic tension and attenuated spontaneous activity with similar potency, but the concentrations required were two orders of magnitude higher in β2-AR KO than WT. The concentration-response curves (CRCs) for relaxation were not affected by CGP 20712A (300 nM), but were shifted to the right by ICI 118,551 (50 nM) and L748,337 (10 μM). The -logEC50 values for (-)-isoprenaline in WT and β2-AR KO tissue were 7.98 and 6.00, respectively, suggesting a large receptor reserve of β2-AR. (-)-CL 316,243 relaxed detrusor and attenuated spontaneous contractions from WT and β2-AR KO mice with a potency corresponding to the drug’s affinity for β3-AR. L743,337 shifted the CRCs to the right. Conclusion: Our findings in β2-AR KO mice suggest that there is a large receptor reserve for β2-AR in WT mice so that this β-AR subtype will mediate relaxation of tone and attenuation of spontaneous activity under physiological conditions. Nevertheless, upon removal of this reserve, β3-AR can also mediate murine detrusor relaxation. KW - detrusor muscle KW - relaxation KW - mucosa KW - beta2-adrenoceptor knockout KW - beta3 CL 316,243 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165245 VL - 7 IS - 118 ER -