TY - JOUR A1 - Wagner, Michael A1 - Sadek, Mirna S. A1 - Dybkova, Nataliya A1 - Mason, Fleur E. A1 - Klehr, Johann A1 - Firneburg, Rebecca A1 - Cachorro, Eleder A1 - Richter, Kurt A1 - Klapproth, Erik A1 - Kuenzel, Stephan R. A1 - Lorenz, Kristina A1 - Heijman, Jordi A1 - Dobrev, Dobromir A1 - El-Armouche, Ali A1 - Sossalla, Samuel A1 - Kämmerer, Susanne T1 - Cellular mechanisms of the anti-arrhythmic effect of cardiac PDE2 overexpression JF - International Journal of Molecular Sciences N2 - Background: Phosphodiesterases (PDE) critically regulate myocardial cAMP and cGMP levels. PDE2 is stimulated by cGMP to hydrolyze cAMP, mediating a negative crosstalk between both pathways. PDE2 upregulation in heart failure contributes to desensitization to β-adrenergic overstimulation. After isoprenaline (ISO) injections, PDE2 overexpressing mice (PDE2 OE) were protected against ventricular arrhythmia. Here, we investigate the mechanisms underlying the effects of PDE2 OE on susceptibility to arrhythmias. Methods: Cellular arrhythmia, ion currents, and Ca\(^{2+}\)-sparks were assessed in ventricular cardiomyocytes from PDE2 OE and WT littermates. Results: Under basal conditions, action potential (AP) morphology were similar in PDE2 OE and WT. ISO stimulation significantly increased the incidence of afterdepolarizations and spontaneous APs in WT, which was markedly reduced in PDE2 OE. The ISO-induced increase in I\(_{CaL}\) seen in WT was prevented in PDE2 OE. Moreover, the ISO-induced, Epac- and CaMKII-dependent increase in I\(_{NaL}\) and Ca\(^{2+}\)-spark frequency was blunted in PDE2 OE, while the effect of direct Epac activation was similar in both groups. Finally, PDE2 inhibition facilitated arrhythmic events in ex vivo perfused WT hearts after reperfusion injury. Conclusion: Higher PDE2 abundance protects against ISO-induced cardiac arrhythmia by preventing the Epac- and CaMKII-mediated increases of cellular triggers. Thus, activating myocardial PDE2 may represent a novel intracellular anti-arrhythmic therapeutic strategy in HF. KW - PDE2 KW - arrhythmia KW - CaMKII KW - heart failure Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285888 SN - 1422-0067 VL - 22 IS - 9 ER - TY - JOUR A1 - Lorenz, Kristina A1 - Rosner, Marsha Rich T1 - Harnessing RKIP to combat heart disease and cancer JF - Cancers N2 - Cancer and heart disease are leading causes of morbidity and mortality worldwide. These diseases have common risk factors, common molecular signaling pathways that are central to their pathogenesis, and even some disease phenotypes that are interdependent. Thus, a detailed understanding of common regulators is critical for the development of new and synergistic therapeutic strategies. The Raf kinase inhibitory protein (RKIP) is a regulator of the cellular kinome that functions to maintain cellular robustness and prevent the progression of diseases including heart disease and cancer. Two of the key signaling pathways controlled by RKIP are the β-adrenergic receptor (βAR) signaling to protein kinase A (PKA), particularly in the heart, and the MAP kinase cascade Raf/MEK/ERK1/2 that regulates multiple diseases. The goal of this review is to discuss how we can leverage RKIP to suppress cancer without incurring deleterious effects on the heart. Specifically, we discuss: (1) How RKIP functions to either suppress or activate βAR (PKA) and ERK1/2 signaling; (2) How we can prevent cancer-promoting kinase signaling while at the same time avoiding cardiotoxicity. KW - RKIP KW - ERK1/2 KW - PKA KW - βAR KW - heart failure KW - cancer Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262185 SN - 2072-6694 VL - 14 IS - 4 ER - TY - JOUR A1 - Boivin, Valérie A1 - Beyersdorf, Niklas A1 - Palm, Dieter A1 - Nikolaev, Viacheslav O. A1 - Schlipp, Angela A1 - Müller, Justus A1 - Schmidt, Doris A1 - Kocoski, Vladimir A1 - Kerkau, Thomas A1 - Hünig, Thomas A1 - Ertl, Georg A1 - Lohse, Martin J. A1 - Jahns, Roland T1 - Novel Receptor-Derived Cyclopeptides to Treat Heart Failure Caused by \(Anti-β_1-Adrenoceptor\) Antibodies in a Human-Analogous Rat Model JF - PLoS One N2 - Despite recent therapeutic advances the prognosis of heart failure remains poor. Recent research suggests that heart failure is a heterogeneous syndrome and that many patients have stimulating auto-antibodies directed against the second extracellular loop of the \(β_1\) adrenergic receptor \((β_1EC2)\). In a human-analogous rat model such antibodies cause myocyte damage and heart failure. Here we used this model to test a novel antibody-directed strategy aiming to prevent and/or treat antibody-induced cardiomyopathy. To generate heart failure, we immunised n = 76/114 rats with a fusion protein containing the human β1EC2 (amino-acids 195–225) every 4 weeks; n = 38/114 rats were control-injected with 0.9% NaCl. Intravenous application of a novel cyclic peptide mimicking \(β_1EC2\) (\(β_1EC2-CP\), 1.0 mg/kg every 4 weeks) or administration of the \(β_1-blocker\) bisoprolol (15 mg/kg/day orally) was initiated either 6 weeks (cardiac function still normal, prevention-study, n = 24 (16 treated vs. 8 untreated)) or 8.5 months after the 1st immunisation (onset of cardiomyopathy, therapy-study, n = 52 (40 treated vs. 12 untreated)); n = 8/52 rats from the therapy-study received \(β_1EC2-CP/bisoprolol\) co-treatment. We found that \(β_1EC2-CP\) prevented and (alone or as add-on drug) treated antibody-induced cardiac damage in the rat, and that its efficacy was superior to mono-treatment with bisoprolol, a standard drug in heart failure. While bisoprolol mono-therapy was able to stop disease-progression, \(β_1EC2-CP\) mono-therapy -or as an add-on to bisoprolol- almost fully reversed antibody-induced cardiac damage. The cyclo¬peptide acted both by scavenging free \(anti-β_1EC2-antibodies\) and by targeting \(β_1EC2\)-specific memory B-cells involved in antibody-production. Our model provides the basis for the clinical translation of a novel double-acting therapeutic strategy that scavenges harmful \(anti-β_1EC2-antibodies\) and also selectively depletes memory B-cells involved in the production of such antibodies. Treatment with immuno-modulating cyclopeptides alone or as an add-on to \(β_1\)-blockade represents a promising new therapeutic option in immune-mediated heart failure. KW - memory B cells KW - antibodies KW - T cells KW - B cells KW - heart KW - heart failure KW - kidneys KW - enzyme-linked immunoassays Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126028 VL - 10 IS - 2 ER -