TY - JOUR A1 - Fecher, David A1 - Hofmann, Elisabeth A1 - Buck, Andreas A1 - Bundschuh, Ralph A1 - Nietzer, Sarah A1 - Dandekar, Gudrun A1 - Walles, Thorsten A1 - Walles, Heike A1 - Lückerath, Katharina A1 - Steinke, Maria T1 - Human Organotypic Lung Tumor Models: Suitable For Preclinical \(^{18}\)F-FDG PET-Imaging JF - PLoS ONE N2 - Development of predictable in vitro tumor models is a challenging task due to the enormous complexity of tumors in vivo. The closer the resemblance of these models to human tumor characteristics, the more suitable they are for drug-development and –testing. In the present study, we generated a complex 3D lung tumor test system based on acellular rat lungs. A decellularization protocol was established preserving the architecture, important ECM components and the basement membrane of the lung. Human lung tumor cells cultured on the scaffold formed cluster and exhibited an up-regulation of the carcinoma-associated marker mucin1 as well as a reduced proliferation rate compared to respective 2D culture. Additionally, employing functional imaging with 2-deoxy-2-[\(^{18}\)F]fluoro-D-glucose positron emission tomography (FDG-PET) these tumor cell cluster could be detected and tracked over time. This approach allowed monitoring of a targeted tyrosine kinase inhibitor treatment in the in vitro lung tumor model non-destructively. Surprisingly, FDG-PET assessment of single tumor cell cluster on the same scaffold exhibited differences in their response to therapy, indicating heterogeneity in the lung tumor model. In conclusion, our complex lung tumor test system features important characteristics of tumors and its microenvironment and allows monitoring of tumor growth and -metabolism in combination with functional imaging. In longitudinal studies, new therapeutic approaches and their long-term effects can be evaluated to adapt treatment regimes in future. KW - lung and intrathoracic tumors KW - trachea KW - adenocarcinoma of the lung KW - cancer treatment KW - secondary lung tumors KW - pulmonary imaging KW - extracellular matrix KW - collagens Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179678 VL - 11 IS - 8 ER - TY - JOUR A1 - Lapa, Constantin A1 - Kircher, Stefan A1 - Schirbel, Andreas A1 - Rosenwald, Andreas A1 - Kropf, Saskia A1 - Pelzer, Theo A1 - Walles, Thorsten A1 - Buck, Andreas K. A1 - Weber, Wolfgang A. A1 - Wester, Hans-Juergen A1 - Herrmann, Ken A1 - Lückerath, Katharina T1 - Targeting CXCR4 with [\(^{68}\)Ga]Pentixafor: a suitable theranostic approach in pleural mesothelioma? JF - Oncotarget N2 - C-X-C motif chemokine receptor 4 (CXCR4) is a key factor for tumor growth and metastasis in several types of human cancer. This study investigated the feasibility of CXCR4-directed imaging with positron emission tomography/computed tomography (PET/CT) using [\(^{68}\)Ga]Pentixafor in malignant pleural mesothelioma. Six patients with pleural mesothelioma underwent [\(^{68}\)Ga]Pentixafor-PET/CT. 2′-[\(^{18}\)F]fluoro-2′-deoxy-D-glucose ([\(^{18}\)F]FDG)-PET/CT (4/6 patients) and immunohistochemistry obtained from biopsy or surgery (all) served as standards of reference. Additionally, 9 surgical mesothelioma samples were available for histological work-up. Whereas [\(^{18}\)F]FDG-PET depicted active lesions in all patients, [\(^{68}\)Ga]Pentixafor-PET/CT recorded physiologic tracer distribution and none of the 6 patients presented [\(^{68}\)Ga]Pentixafor-positive lesions. This finding paralleled results of immunohistochemistry which also could not identify relevant CXCR4 surface expression in the samples analyzed. In contrast to past reports, our data suggest widely absence of CXCR4 expression in pleural mesothelioma. Hence, robust cell surface expression should be confirmed prior to targeting this chemokine receptor for diagnosis and/or therapy. KW - PET KW - CXCR4 KW - [\(^{68}\)Ga] pentixafor KW - pleural mesothelioma KW - theranostics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169989 VL - 8 IS - 57 ER -