TY - JOUR A1 - Almanzar, Giovanni A1 - Klein, Matthias A1 - Schmalzing, Marc A1 - Hilligardt, Deborah A1 - El Hajj, Nady A1 - Kneitz, Hermann A1 - Wild, Vanessa A1 - Rosenwald, Andreas A1 - Benoit, Sandrine A1 - Hamm, Henning A1 - Tony, Hans-Peter A1 - Haaf, Thomas A1 - Goebeler, Matthias A1 - Prelog, Martina T1 - Disease Manifestation and Inflammatory Activity as Modulators of Th17/Treg Balance and RORC/FoxP3 Methylation in Systemic Sclerosis JF - International Archives of Allergy and Immunology N2 - Background: There is much evidence that T cells are strongly involved in the pathogenesis of localized and systemic forms of scleroderma (SSc). A dysbalance between FoxP3+ regulatory CD4+ T cells (Tregs) and inflammatory T-helper (Th) 17 cells has been suggested. Methods: The study aimed (1) to investigate the phenotypical and functional characteristics of Th17 and Tregs in SSc patients depending on disease manifestation (limited vs. diffuse cutaneous SSc, dcSSc) and activity, and (2) the transcriptional level and methylation status of Th17- and Treg-specific transcription factors. Results: There was a concurrent accumulation of circulating peripheral IL-17-producing CCR6+ Th cells and FoxP3+ Tregs in patients with dcSSc. At the transcriptional level, Th17- and Treg-associated transcription factors were elevated in SSc. A strong association with high circulating Th17 and Tregs was seen with early, active, and severe disease presentation. However, a diminished suppressive function on autologous lymphocytes was found in SSc-derived Tregs. Significant relative hypermethylation was seen at the gene level for RORC1 and RORC2 in SSc, particularly in patients with high inflammatory activity. Conclusions: Besides the high transcriptional activity of T cells, attributed to Treg or Th17 phenotype, in active SSc disease, Tregs may be insufficient to produce high amounts of IL-10 or to control proliferative activity of effector T cells in SSc. Our results suggest a high plasticity of Tregs strongly associated with the Th17 phenotype. Future directions may focus on enhancing Treg functions and stabilization of the Treg phenotype. KW - methylation KW - systemic sclerosis KW - suppression KW - Tregs KW - Th17 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196577 SN - 1018-2438 SN - 1423-0097 N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 171 IS - 2 ER - TY - JOUR A1 - Klein-Hessling, Stefan A1 - Muhammad, Khalid A1 - Klein, Matthias A1 - Pusch, Tobias A1 - Rudolf, Ronald A1 - Flöter, Jessica A1 - Qureischi, Musga A1 - Beilhack, Andreas A1 - Vaeth, Martin A1 - Kummerow, Carsten A1 - Backes, Christian A1 - Schoppmeyer, Rouven A1 - Hahn, Ulrike A1 - Hoth, Markus A1 - Bopp, Tobias A1 - Berberich-Siebelt, Friederike A1 - Patra, Amiya A1 - Avots, Andris A1 - Müller, Nora A1 - Schulze, Almut A1 - Serfling, Edgar T1 - NFATc1 controls the cytotoxicity of CD8\(^{+}\) T cells JF - Nature Communications N2 - Cytotoxic T lymphocytes are effector CD8\(^{+}\) T cells that eradicate infected and malignant cells. Here we show that the transcription factor NFATc1 controls the cytotoxicity of mouse cytotoxic T lymphocytes. Activation of Nfatc1\(^{-/-}\) cytotoxic T lymphocytes showed a defective cytoskeleton organization and recruitment of cytosolic organelles to immunological synapses. These cells have reduced cytotoxicity against tumor cells, and mice with NFATc1-deficient T cells are defective in controlling Listeria infection. Transcriptome analysis shows diminished RNA levels of numerous genes in Nfatc1\(^{-/-}\) CD8\(^{+}\) T cells, including Tbx21, Gzmb and genes encoding cytokines and chemokines, and genes controlling glycolysis. Nfatc1\(^{-/-}\), but not Nfatc2\(^{-/-}\) CD8\(^{+}\) T cells have an impaired metabolic switch to glycolysis, which can be restored by IL-2. Genome-wide ChIP-seq shows that NFATc1 binds many genes that control cytotoxic T lymphocyte activity. Together these data indicate that NFATc1 is an important regulator of cytotoxic T lymphocyte effector functions. KW - cytotoxic T cells KW - lymphocyte activation KW - signal transduction KW - gene regulation KW - immune cells KW - NFATc1 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170353 VL - 8 IS - 511 ER -