TY - THES A1 - Schulte, Valerie T1 - In vitro and in vivo studies on the activating platelet collagen receptor glycoprotein VI in mice T1 - Glykoprotein VI, der aktivierende Kollagenrezeptor auf Blutplättchen - In vitro und in vivo Studien im Mausmodell N2 - The work summarized here focused on the characterization of the murine platelet collagen receptor glycoprotein (GP) VI and was performed to evaluate its potential as an antithrombotic target. The first mAb against (mouse) GPVI, JAQ1, was generated and used to demonstrate that GPVI requires the FcRgamma-chain for its expression and function and that this receptor is the central molecule in collagen-induced platelet activation. Blocking the major collagen binding site on GPVI with JAQ1 revealed the presence of a second activatory epitope within collagen. Additionally, the collagen receptor integrin alpha2beta1 was found to be required for activation via this second pathway but not to be essential for collagen-induced activation of normal platelets. In studies with mice expressing reduced levels of the GPVI-FcRgamma-complex, differential responses to GPVI ligands were observed. Most importantly, the striking difference between platelet responses to collagen and the GPVI specific synthetic collagen related peptide (CRP) confirmed the supportive role of other collagen receptor(s) on platelets. Irrespective of yet undefined additional receptors, studies with mice deficient in GPVI (FcRgamma-chain) or alpha2beta1 showed that GPVI, but not alpha2beta1 is essential for platelet-collagen interaction. Based on these results, the model of platelet attachment to collagen was revised establishing GPVI as the initial activating receptor which upregulates the activity of integrins, thus enabling firm attachment of platelets to the ECM. While the mAb JAQ1 had only limited inhibitory effects on collagen-induced activation in vitro, its in vivo application to mice resulted in completely abolished platelet responses to collagen and the GPVI specific agonists CRP and convulxin. This effect was found to be due to antibody-induced irreversible down-regulation of GPVI on circulating platelets for at least two weeks. Further studies revealed that GPVI depletion occurs independently of the targeted epitope on the receptor and does not require the divalent form of IgG as it was also induced by mAbs (JAQ2, JAQ3) or the respective Fab fragments directed against epitopes distinct from the major collagen binding site. The internalization of GPVI in vivo resulted in a long-term protection of the mice from lethal collagen-dependent thromboembolism whereas it had only moderate effects on the bleeding time, probably because the treatment did not affect other activation pathways. These results establish GPVI as a potential pharmacological target for the prevention of ischemic cardiovascular diseases and may open the way for a completely new generation of antithrombotics. N2 - In der vorliegenden Arbeit wurde untersucht, ob der thrombozytäre Kollagenrezeptor Glykoprotein (GP) VI eine geeignete Zielstruktur für neue Antithrombotika darstellt. Dazu wurden monoklonale Antikörper (mAk) gegen murines GPVI hergestellt (JAQ1, 2 und 3) und deren in vitro und in vivo Effekte im Maussystem untersucht. Es wurde erstmals gezeigt, dass die Expression und Funktion von GPVI auf Thrombozyten von der Assoziation mit der signaltransduzierenden Fc Rezeptor gamma-Kette abhängt. Obwohl GPVI als zentraler Kollagenrezeptor auf Thrombozyten identifiziert wurde, hat die Blockade der Hauptbindestelle für Kollagen mit JAQ1 die Aktivierung nicht vollständig inhibiert, was erstmals die Existenz zweier unabhängiger aktivierender Motive im Kollagen zeigte. Der Kollagenrezeptor Integrin alpha2beta1 ist essentiell für eine Aktivierung durch diesen alternativen Signalweg, nicht jedoch für die Kollagen-induzierte Aktivierung normaler Thrombozyten. Die Präsenz anderer Kollagenrezeptoren neben GPVI wurde in Untersuchungen an Thrombozyten mit reduzierten Expressionsraten des GPVI-FcRgamma-Komplexes bestätigt. Unabhängig davon wurde jedoch anhand von GPVI-, FcRgamma- und alpha2beta1-defizienten Mäusen belegt, dass GPVI, nicht aber wie zuvor angenommen alpha2beta1 der zentrale Kollagenrezeptor auf Thrombozyten ist. Diese Ergebnisse wurden in einem veränderten Modell der Thrombozyten-Kollagen Interaktion zusammengefasst, in dem GPVI als der initiale Rezeptor zur Integrinaktivierung und somit zur festen Adhäsion der Thrombozyten an die EZM etabliert wird. Im Gegensatz zu den in vitro Resultaten mit JAQ1 waren Thrombozyten von anti-GPVI-behandelten Mäusen weder durch Kollagen noch durch andere GPVI Liganden aktivierbar. Es zeigte sich, dass die Antikörper in vivo die Internalisierung sowie den proteolytischen Abbau des Rezeptors induzierten. Dieser Effekt war unabhängig von der Bindungsstelle auf GPVI und konnte auch mit monovalenten anti-GPVI Fab Fragmenten erzielt werden. Während der mindestens zweiwöchigen GPVI-Defizienz der zirkulierenden Thrombozyten waren die JAQ1-behandelten Mäuse vor Kollagen-induzierter Thromboembolie geschützt. Darüber hinaus hatte die GPVI-Depletion nur geringe Effekte auf die Blutungszeit, wahrscheinlich weil diese Behandlung keine anderen Aktivierungswege beeinflusste. Diese Ergebnisse zeigen, dass GPVI ein viel versprechendes pharmakologisches Zielprotein für die prophylaktische Therapie kardiovaskulärer Krankheiten ist, das als Grundlage zur Entwicklung neuer Antithrombotika dienen kann. KW - Maus KW - Kollagen KW - Rezeptor KW - Antithrombotikum KW - Kollagen KW - Glykoprotein VI KW - Maus KW - Plättchen KW - Antithrombotika KW - Collagen KW - Glycoprotein VI KW - Mouse KW - Platelets KW - Antithrombotics Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-6564 ER - TY - THES A1 - Rabie, Tamer T1 - Cellular regulation of platelet glycoprotein VI : in vivo and in vitro studies in mice T1 - Zelluläre Regulation von Plättchen Glykoprotein VI : in vivo und in vitro Studien in der Maus N2 - Platelet interaction with the subendothelium is essential to limit blood loss after tissue injury. However, upon rupture of atherosclerotic plaques, this interaction may result in blood vessel occlusion leading to life threatening diseases such as myocardial infarction or stroke. Among the subendothelial matrix proteins, collagen is considered to be the most thrombogenic component as it directly activates platelets. Platelets interact with collagen, either indirectly through glycoprotein (GP) Ib-V-IX receptor complex, or directly through the major collagen receptor on the platelet surface, GPVI. The work presented here focused on studying the cellular regulation of GPVI. In addition, a possible role for GPVI in thrombus formation induced by atherosclerotic plaque material was investigated and it was found that GPVI plays an important role in this process. Using a recently published mitochondrial injury model, it was found that GPVI contains a cleavage site for a platelet-expressed metalloproteinase. Further studies showed that platelet activation by CRP, or thrombin induced down-regulation of GPIb, but not GPVI. In parallel, cellular regulation of GPV was studied and it was found that GPV is cleaved in vitro by the metalloproteinase ADAM17. In previous studies it was shown that injection of mice with the anti-GPVI mAb, JAQ1, induces GPVI down-regulation, which is associated with a strong, but transient, thrombocytopenia. Using new anti-GPVI mAbs, which bind different epitopes on the receptor, it is shown in this study that GPVI down-regulation occurs in an epitope-independent manner. Further experiments showed that antibody treatment induces a transient, but significant increase in bleeding time. Using different genetically modified mice, it is shown that, upon antibody injection, GPVI is both, shed from the platelet surface and internalized into the platelet. Signaling through the immunoreceptor tyrosine-based activation motif (ITAM) of the FcR chain is essential for both processes, while LAT and PLC2 are essential for the shedding process only. Antibody-induced increase in bleeding time and thrombocytopenia were absent in LAT deficient mice, showing that it is possible to uncouple the associated side effects from the down-regulation process. As antibody-induced GPVI internalization still occurs in LAT and PLC2 deficient mice, this suggests a novel signaling pathway downstream of GPVI that has not been described so far. N2 - Plättchen Interaktion mit dem Subendothel ist für die Blutstillung essentiell. Dies kann jedoch nach dem Aufbrechen atherosklerotischer Plaques zu lebensbedrohlicher Erkrankungen wie Infarkt oder Schlaganfall führen. Kollagen, welches die Plättchen dirket aktiviert, ist der thrombogenste Bestandteil der Extrazellularmatrix (EZM). Die Bindung zwischen Plättchen und Kollagen wird sowohl indirekt durch den Glykoprotein (GP) Ib-V-IX Rezeptorkomplex, als auch direkt durch den Kollagenrezeptor GPVI, auf der Plättchenoberfläche vermittelt. In der vorliegenden Arbeit wurde die zelluläre Regulation von GPVI untersucht. Des Weiteren wurde die Rolle von GPVI in durch atheroklerotisches Plaquematerial induzierter Thrombusbildung studiert. Hierbei wurde festgestellt, dass GPVI eine wichtige Funktion in diesem Prozess spielt. Mittels eines jüngst publizierten mitochondrialen Verletzungsmodels, konnte gezeigt werden, dass GPVI eine Erkennungsstelle für eine in den Plättchen exprimierte Metalloproteinase besitzt. Mehrere Versuche haben gezeigt, dass Plättchenaktivierung durch CRP, und Thrombin zur Runterregulierung von GPIb aber nicht von GPVI führt. Parallellaufende Untersuchungen zeigten, dass GPV durch die Metalloproteinase ADAM17 in vitro abgespalten wird. Vorherige Studien ergaben, dass die in vivo Behandlung von Mäusen mit dem anti-GPVI Antikörper, JAQ1, zur Runterregulierung des Rezeptors führt. Dieses ist mit einer starken, transienten Thrombozytopenie assoziiert. Mittels neu generierte anti-GPVI Antikörper (JAQ2, 3), die unterschiedliche Bindungsstellen auf GPVI erkennen, konnte demonstriert werden, dass die Antikörper vermittele GPVI Runterregulierung Epitop unabhängig ist. Weitere Untersuchungen ergaben, dass Anitkörperinjektion eine transiente Erhöhung der Blutungszeit verursacht. Mittels genetisch modifizierter Mäuse konnte dargestellt werden, dass die Antikörpergabe GPVI sowohl von der Plättchenoberfläche abgespalten, als auch internalisiert wird. Während die Signaltransduktion durch das ITAM Motif der FcR Kette essentiell für beide Prozesse ist, sind LAT und PLC2 nur für das Abspalten wichtig. Antikörper induzierte Erhöhung der Blutungszeit und Thrombozytopenie sind abwesend in LAT-defizienten Mäuse, was zeigt, dass möglicherweise die GPVI Runterregulierung von den assoziierten Nebenwirkungen zu trennen ist. Da die GPVI Runterregulierung in LAT und –PLC2 defizienten Mäusen weiterhin stattfindet, zeigt dies einen neuen GPVI Signalweg, der bisher noch nicht beschrieben wurde. KW - Maus KW - Thrombozyt KW - Glykoproteine KW - Regulation KW - Biologie KW - Plättchen KW - Maus KW - Thrombose KW - Kardiovaskulär KW - maus KW - platelets KW - thrombosis KW - cardiovascular Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14267 ER - TY - THES A1 - Pozgajova, Miroslava T1 - Studies on formation and stabilization of pathological thrombi in vivo T1 - Studien von formation und stabilizierung den pathologischen Thrombus in vivo N2 - Platelet activation and adhesion resulting in thrombus growth is essential for normal hemostasis, but can lead to irreversible, life-threatening vessel occlusion. In the current study, the contribution of platelet integrins, activation receptors and the contact system of blood coagulation in such pathological conditions was investigated in mice. N2 - Plättchenaktivierung, -adhäsion und nachfolgende Thrombusbildung ist ein für die Hämostase essentieller Prozess, der jedoch zu irreversiblem lebensbedrohlichen Gefäßverschluss führen kann. In der vorliegenden Arbeit wurde die Rolle von Thrombozyten-Integrinen, aktivierenden Rezeptoren, sowie dem Kontaktsystem der Koagulation unter pathologischen Bedingungen im Maussystem untersucht. KW - Thrombose KW - Platelet activating Factor KW - In vivo KW - Thrombose KW - Plätchen aktivierung KW - in vivo Modelle KW - Thrombosis KW - Platelet activation KW - in vivo models Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16784 ER - TY - THES A1 - Beitzinger, Michaela T1 - Regulierung der Telomerase durch das p53-Homolog p73 T1 - Regulation of telomerase activity by the p53-homologue p73 N2 - Das Ribonukleoprotein, Telomerase wird vor allem für die Aufrechterhaltung der Telomerlänge benötigt und ist normalerweise nur in Keimbahnzellen, Stammzellen und anderen Zellen mit erhöhter Regenerationsfähigkeit aktiv. Die Aktivierung der Telomerase ist darüber hinaus ein wichtiger Faktor während der Krebsentstehung. Fast das komplette Spektrum humaner Tumore zeichnet sich durch hohe Telomerase-Aktivität aus. Vor allem maligne Tumore besitzen eine sehr aktive Telomerase, unlimitiertes Wachstum und Immortalität ermöglicht. Die Aktivität der Telomerase wird vor allem über die Expression der katalytischen Untereinheit hTERT reguliert, die unter der strikten Kontrolle verschiedener Tumorsuppressorgene liegt. Zu den wichtigsten Regulatoren der hTERT-Expression gehört auch der bekannte Tumorsuppressor p53. Über die Rolle des p53-Familienmitglieds p73 in der Regulation der Telomerase-Aktivität war bisher nur wenig bekannt. Im Rahmen dieser Arbeit konnte ein regulatorischer Einfluss von p73 nachgewiesen werden. Dabei wurden deutliche Unterschiede in der Funktion der N-terminalen Isoformen TAp73 und DeltaNp73 beobachtet. TAp73 erwies sich sowohl nach Überexpression als auch nach Induktion des endogenen TAp73 als ein effizienter Repressor der hTERT-Expression. Im Gegensatz dazu konnte durch die Hemmung des endogenen TAp73 mittels RNAi die Expression von hTERT in verschiedenen Zelllinen induziert werden. Zusätzlich zu der Funktion als Tumorsuppressor scheint p73 auch in verschiedene Differenzierungsprozesse involviert zu sein. Die Expression von p73 korreliert zwar mit der Hemmung der Telomerase-Aktivität während der myeloischen Differenzierung von HL60-Zellen, hat hier aber keine Bedeutung für die Repression von hTERT. Die N-terminal verkürzte Isoform DeltaNp73 wirkt im Gegensatz zu TAp73 als effizienter Aktivator der hTERT-Expression. DeltaNp73 induziert die hTERT-Expression einerseits über seine dominant-negative Funktion auf die pro-apoptotischen p53-Familienmitglieder und andererseits über die Hemmung repressiver RB-E2F-Komplexe. Im Rahmen dieser Studie erwies sich p73 somit als ein wichtiger Regulator der Telomerase Aktivität, wobei sich eine duale Rolle als negativer (TAp73) und auch als positiver (DeltaNp73) Regulator der Telomerase Aktivität herausstellte. N2 - The ribonucleoprotein Telomerase is primarily responsible for the maintenance of the telomeric ends of the chromosomes and normally expressed in germ cells, stem cells and other cells with enhanced proliferative capacity. Furthermore, activation of telomerase is an important factor for cancer development. Almost all human tumors express active telomerase which mediates unlimited growth and immortality. Telomerase activity is mainly regulatedon the levels of its, which is strictly repressed by various tumorsuppressor genes. One of the most important regulators of the hTERT-Expression is the well known tumorsuppressor p53. So far there not much is known about the role of the p53 family member p73 in regulation of telomerase activity. This study confirmed the regulatory influence of p73 and revealed fundamental differences between the N-terminally isoforms TAp73 and DeltaNp73. Overexpression as well as induction of the endogenous p73 was sufficient to inhibit hTERT expression. In contrast, siRNA mediated knock-down of the endogenous p73 enhances hTERT expression in various cell lines. In addition to its role as tumorsuppressor p73 is also involved in the control of cellular differentiation processes. Expression of p73 correlates with the repression of telomerase activity during myeloid differentiation of HL60 cells but is not essential for inhibition of the hTERT. The N-terminal truncated isoform DeltaNp73 acts, in contrast to TAp73, as an efficient activator of hTERT. DeltaNp73 induces hTERT by its dominant negative function against all pro apoptotic p53 family members and by inhibition of repressive RB-E2F complexes at the hTERT promoter. This study revealed p73 as an important regulator of hTERT expression and demonstrated a dual role as a negative (TAp73) and positive (DeltaNp73) regulator of telomerase activity. KW - Telomerase KW - hTERT KW - p73 KW - p53 KW - telomerase KW - hTERT KW - p73 KW - p53 Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-17985 ER - TY - THES A1 - Strehl, Amrei T1 - Studies on regulation and signaling of the platelet glycoproteins GPV and GPVI T1 - Studien zur Regulation und Signaltransduktion der Plättchenglykoproteine GPV und GPVI N2 - Bei Verletzung einer Gefäßwand kommen Blutplättchen in Kontakt mit den Substanzen des Subendothels; Die Plättchen werden dadurch aktiviert, sie aggregieren und verschließen die Wunde, wodurch ein hoher Blutverlust verhindert wird. Unter pathologischen Bedingungen, bei Aufbrechen eines artherosklerotischen Plaques an der Gefäßwand, können sich jedoch große Plättchenaggregate, die Thromben, formen, die das Gefäß verschließen, den Blutfluss stoppen und somit zu Schlaganfall und Herzinfarkt führen können. Die kontrollierte Regulation und Signaltransduktion von bzw. durch Plättchenoberflächenrezeptoren ist wesentlich für das Funktionieren der Zellen und die intakte Balance zwischen physiologischer Plättchen-Aktivierung und der pathologischen Bildung eines Thrombus. In der vorliegenden Arbeit wird über wichtige Aspekte dieser Signalwege, die in drei Unterprojekten untersucht worden sind, berichtet. In dem ersten Unterprojekt wurde die Regulation von Plättchenoberflächenrezeptoren, den Glykoproteinen (GP) V und VI, bei Mäusen analysiert. Hier wird beschrieben, dass GPV und GPVI von der Plättchenoberfläche durch Metalloproteinasen geschnitten werden. Während physiologischer Stress, wie das Entkoppeln der oxidativen Phosphorylierung in den Mitochondrien, das Schneiden von GPVI durch eine unbekannte Proteinase auslöst, verursacht die Aktivierung von Plättchen mit bestimmten Agonisten das Schneiden von GPV. Die dafür verantwortliche Metalloproteinase wurde als ADAM17 identifiziert. In dem zweiten Unterprojekt wurde die Rolle der Protein Kinase C (PKC) in der Plättchenaktivierung einerseits und in der Plättchen pro-koagulanten Aktivität andereseits untersucht. Die Konformationsänderung/Aktivierung von alphaIIbeta3-Integrinen und Sekretion von Granula sind charakteristisch für die Plättchenaktivierung. Calcium-(Ca2+)-abhängige Phosphatidylserin (PS)- Expression auf der Plättchenoberfläche hingegen ist kennzeichnend für die pro-koagulante Aktivität. Der Beitrag von PKC zu den beschriebenen Plättchenzuständen war bisher unklar. In diesem Projekt wurde zum ersten Mal gezeigt, dass PKC eine doppelte Funktion in den Plättchen besitzt: einerseits fördert PKC die Plättchen-Aktivierung und –Aggregation, andererseits unterdrückt PKC die pro-koagulant Aktivität. In dem dritten Unterprojekt wurde die Rolle der kleinen GTPase Rac1 in der Plättchen- Aktivierung und -Aggregation in vitro und in vivo an konditionalen Rac1 Mäusen analysiert. Es wird berichtet, dass Rac1 für die GPVI abhängige Aktivierung von alphaIIbbeta3-Integrinen und dem Freisetzen von Ca2+ in der Zelle, notwendig ist, sowie für GPVI abhängige Plättchen-Aggregation und Thrombus Bildung. Hiermit wird die GTPase Rac1 zum ersten Mal in den Signalweg unterhalb von GPVI eingeordnet und ihr zudem dort eine essentielle Rolle zugeteilt. N2 - Platelets are crucial to inhibit extensive blood loss at sites of vascular injury. However, under pathological conditions such as rupture of an atherosclerotic plaque, activated platelets form aggregates that may occlude the vessel. This can lead to heart attack and stroke. Various and complex signaling pathways in the cell are involved in the steps of platelet adhesion, activation and aggregation. Single aspects of these processes were studied in three different subprojects in this work. The Glycoprotein (GP) Ib-V-IX complex is responsible for the first contact of platelets with the vessel wall. Subsequently, GPVI can bind to collagen of the subendothelium, which initiates a signaling cascade leading to platelet activation, aggregation, characterized by integrin activation and granule secretion and platelet procoagulant activity. The latter is characterized by exposed phosphatidylserine (PS) on the platelet surface, which enhances thrombin generation and thereby the coagulation cascade. A controlled regulation of GP receptors on the platelet surface is vital for an intact response of the cell to platelet agonists. In the first subproject described here the regulation of GPV and GPVI on mouse platelets was investigated and it was found that both receptors are shed from the platelet surface in a metalloproteinase dependent manner. However, GPVI is shed upon mitochondrial injury, while GPV cleavage could be observed upon platelet stimulation. The metalloproteinase responsible for GPVI shedding remains unknown whereas the metallproteinase that sheds GPV was identified in this work as being ADAM17. This shows that the expression of both receptors underlies a controlled mechanism regulated through distinct metalloproteinases. In the second subproject the role of protein kinase C (PKC) in platelet activation and procoagulant response was investigated using PKC specific inhibitors. It was found that PKC blockage reduced platelet activation but enhanced platelet procoagulant activity. This is the first time that a dual role in platelet activation and procoagulant activity is defined for PKC. In the third project the role of the small GTPase Rac1 in platelet signaling was studied using conditional Rac1 knock out mice. It is reported here that Rac1 lies downstream of GPVI and is involved in integrin activation and cytsolic Ca2+ changes in vitro and platelet adhesion and thrombus formation in vivo. This is the first time that Rac1 is demonstrated to have a pivotal role in GPVI signaling and furthermore points to a novel, unknown pathway downstream of GPVI. KW - Thrombozyt KW - Membranglykoproteine KW - Proteinkinase C KW - Signaltransduktion KW - Blutplättchen KW - Glykoprotein-Shedding KW - Protein Kinase C KW - Koagulation KW - Rac1 KW - platelets KW - glycoprotein-shedding KW - protein kinase C KW - coagulation KW - Rac1 Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-22283 ER - TY - THES A1 - Jurak, Igor T1 - The molecular mechanism of the Cytomegalovirus species specificity T1 - Molekulare Mechanismen der Cytomegaloviren Arten Spezifizierung N2 - Viruses have undergone a coevolution with their hosts, resulting in a specific adaptation to them. Consequently, many viruses have a limited host range. Occasionally, viruses acquire an adaptive mutation, which allows infection and replication in a different species as shown recently for the human immunodeficiency virus and influenza virus. Cross-species infections are responsible for the majority of emerging and re-emerging viral diseases. However, little is known about the mechanisms that restrict viruses to a certain host species, and the factors viruses need to cross the species barrier and replicate in a different host. Cytomegaloviruses are prototypes of the beta-herpesvirus subfamily and are highly species specific. They replicate only in cells of their own or a closely related species. The molecular mechanism underlying their species specificity is poorly understood and was investigated in this study. An initial observation showed that murine cytomegalovirus (MCMV) can replicate in human 293 and 911 cells, but not in any other human cells tested. Both cell lines are transformed with adenoviral E1 genes that encode a transcriptional transactivator (E1A) and two suppressors of apoptosis (E1B-55k and E1B-19k). This has led to the hypothesis that these functions are required for MCMV replication in human cells. Further analysis revealed that normal human cells died rapidly after infection of caspase-9-mediated apoptosis. Apoptosis induced by MCMV can be suppressed by broad-spectrum caspase inhibitors, and virus replication can be rescued, indicating a major role of caspases in this process. Furthermore, over-expression of a mitochondria-localized inhibitor of apoptosis, a Bcl-2-like protein, prevented apoptosis induced by this virus. Human cells resistant to apoptosis allowed also an efficient MCMV replication. The important role of Bcl-2-like proteins for cytomegalovirus cross-species infections was subsequently confirmed by inserting the corresponding genes, and other inhibitors of apoptosis and control genes into the MCMV genome. Only recombinant viruses expressing a Bcl-2-like protein were able to replicate in human cells. A single gene of human cytomegalovirus encoding a mitochondrial inhibitor of apoptosis was sufficient to allow MCMV replication in human cells. Moreover, the same principle facilitated replication of the rat cytomegalovirus in human cells. Thus, induction of apoptosis limits rodent cytomegalovirus cross-species infection. N2 - Viren durchliefen eine gemeinsame Evolution mit ihren Wirtsorganismen, die zu einer spezifischen Anpassung der Viren an ihren jeweiligen Wirt führte. Als Folge dessen verfügen viele Viren über ein eng begrenztes Wirtsspektrum. Gelegentlich machen Viren Veränderungen durch, die es ihnen erlauben, einen neuen Wirt zu infizieren und in ihm zu replizieren, wie dies in jüngster Vergangenheit beim humanen Immundefizienz-Virus oder beim Grippevirus geschehen ist. Spezies-übergreifende Infektionen sind für die meisten neuen und wiederauftauchenden Viruserkrankungen verantwortlich. Allerdings ist bisher wenig über die Mechanismen bekannt, die Viren auf einen bestimmten Wirt beschränken, und welche Faktoren Viren zur Überwindung der Spezies-Barriere und zur Vermehrung in einer neuen Wirtsspezies benötigen. Cytomegaloviren sind Prototypen der beta-Herpesvirus Unterfamilie und verfügen über eine ausgeprägte Spezies-Spezifität. Sie vermehren sich nur in Zellen der eigenen oder einer eng verwandten Wirtsspezies. Der molekulare Mechanismus, der dieser Spezies-Spezifität zugrunde liegt, ist noch weitgehend unbekannt und stellt deshalb das Thema dieser Arbeit dar. Initiale Beobachtungen zeigten, dass sich das Maus-Cytomegalovirus (MCMV) ausschließlich in menschlichen 293 und 911 Zellen, aber keiner anderen getesteten menschlichen Zelle vermehren ließ. Diese beiden Zelllinien sind mit Adenovirus E1-Genen transformiert, die den Transkriptions-Transaktivator E1A sowie zwei Apoptose-Inhibitoren (E1B-55k und E1B-19k) kodieren. Daher lag die Hypothese nahe, dass diese Funktionen benötigt werden, um eine MCMV-Replikation in menschlichen Zellen zu ermöglichen. Außerdem konnte gezeigt werden, dass normale menschliche Zellen nach Infektion rapide absterben, und zwar durch eine Caspase-9-vermittelte Apoptose. Die Induktion der Apoptose durch MCMV lässt sich durch Caspase-Inhibitoren unterdrücken, wodurch die virale Replikation wiederhergestellt wird. Dies deutet auf eine Schlüsselfunktion der Caspasen für diesen Prozess hin. Durch Überexpression eines mitochondrialen Apoptose-Inhibitors, d.h. eines Bcl-2-ähnlichen Proteins, in menschlichen Zellen ließ sich die Virus-induzierte Apoptose verhindern. Diese Zellen erlaubten ebenfalls eine effiziente MCMV-Replikation. Die Bedeutung Bcl-2-ähnlicher Proteine für die Spezies-übergreifende Cytomegalovirus-Infektion wurde sowohl durch die Integration korrespondierender Gene, alsauch durch die Integration anderer Inhibitioren der Apoptose oder von Kontroll-Genen in das MCMV Genom bestätigt. Nur rekombinante Viren, die ein Bcl-2-ähnliches Protein kodieren, konnten in menschlichen Zellen vermehrt werden. Ein einziges Gen des humanen Cytomegalovirus, das einen mitochondrialen Apoptose-Inhibitor kodiert, reichte aus, um eine MCMV-Replikation in menschlichen Zellen zu ermöglichen. Zusätzlich konnte gezeigt werden, dass dieselben Prinzipien für eine Replikation des Ratten-Cytomegalovirus in menschlichen Zellen gelten. Zusammenfassend kann festgestellt werden, dass die Induktion der Apoptose eine Spezies-übergreifende Infektion bei den Nagetier-Cytomegaloviren einschränkt. KW - Cytomegalie-Virus KW - Art KW - Spezifität KW - Molekularbiologie KW - cytomegaloviren KW - Bcl-2 KW - apoptose KW - cytomegalovirus KW - Bcl-2 KW - apoptosis KW - species specificity Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19233 ER - TY - THES A1 - Valchanova, Stamatova Ralitsa T1 - Functional analysis of the murine cytomegalovirus genes m142 and m143 N2 - Human cytomegalovirus (HCMV) infection causes clinical symptoms in immunocompromised individuals such as transplantant recipients and AIDS patients. The virus is also responsible for severe complications in unborn children and young infants. The species specificity of HCMV prevents the direct study of mechanisms controlling the infection in animal models. Instead, the murine cytomegalovirus (MCMV) is used as a model system. Human and murine CMVs have large double-stranded DNA genomes, encoding nearly 170 genes. About 30% of the genes are committed to essential tasks of the virus. The remaining genes are involved in virus pathogenesis or host interaction and are dispensable for virus replication. The CMV genes are classified in gene families, based on sequence homology. In the present work, the function of two genes of the US22 gene family was analyzed. The MCMV genes m142 and m143 are the only members of this family that are essential for virus replication. These genes also differ from the remaining ten US22 gene family members in that they lack 1 of 4 conserved sequence motifs that are characteristic of this family. The same conserved motif is missing in the HCMV US22 family members TRS1 and IRS1, suggesting a possible functional homology. To demonstrate an essential role of m142 and m143, the genes were deleted from the MCMV genome, and the mutants were reconstituted on complementing cells. Infection of non-complementing cells with the deletion mutants did not result in virus replication. Virus growth was rescued by reinsertion of the corresponding genes. Cells infected with the viral deletion mutants synthesized reduced amounts of viral DNA, and viral late genes were not expressed. However, RNA analyses showed that late transcripts were present, excluding a role of m142 and m143 in regulation of gene transcription. Metabolic labelling experiments showed that total protein synthesis at late times postinfection was impaired in cells infected with deletion mutants. Moreover, the dsRNA-dependent protein kinase R (PKR) and its target protein, the translation initiation factor 2α (eIF2α) were phosphorylated in these cells. This suggested that the m142 and m143 are required for blocking the PKR-mediated shut-down of protein synthesis. Expression of the HCMV gene TRS1, a known inhibitor of PKR activation, rescued the replication of the deletion mutants, supporting the observation that m142 and m143 are required to inhibit this innate immune response of the host cell. N2 - Die Infektion mit dem humanen Cytomegalovirus (HCMV) kann bei immunsupprimierten Personen wie Transplantatempfängern oder AIDS Patienten, aber auch bei Neugeborenen klinische Symptome hervorrufen. Die Spezies-Spezifität des humanen CMV lässt keine Untersuchung viraler Mechanismen im Tiermodell zu, jedoch steht mit dem murinen CMV (MCMV) ein geeignetes und verbreitetes Modell zur Verfügung. Beide CMVs besitzen große doppelsträngige DNA Genome, die ca. 170 Gene beinhalten. Hiervon sind ca. 30% essentiell für die virale Replikation. Die anderen Gene sind für die Pathogenesse und Interaktion mit den Wirtszellen von Bedeutung. Die Gene des CMV werden auf Grund von Sequenzhomologien in Familien gruppiert. In der vorliegenden Arbeit wird die Funktion der Gene m142 und m143 des MCMV analysiert. Beide Gene sind die einzigen für die Virusreplikation essentiellen Mitglieder der US22 Genfamilie. Darüber hinaus unterscheiden sie sich von den anderen 10 US22 Mitgliedern darin, daß ihnen eine von vier konservierten Sequenzmotiven fehlt. Dieses fehlende Motiv kommt auch bei den HCMV US22 Mitgliedern TRS1 und IRS1 nicht vor, was einen möglichen Hinweis auf eine funktionelle Homologie gibt. Um die essentielle Rolle der m142 und m143 Gene zu belegen, wurden letztere aus dem MCMV Genom entfernt und die Virusmutanten auf komplimentierenden Zellen rekonstituiert. Die Infektion nicht komplimentierender Zellen mit den Virusmutanten erzeugte keine Infektion, konnte jedoch mit der Reinsertion der Gene wieder hergestellt werden. Infizierte Zellen, die mit den Virusmutanten infiziert wurden, produzierten geringere Mengen viraler DNA. Obwohl die Expression später viraler Gene nicht stattfand, konnten späte virale Transkripte nachgewiesen und somit eine Rolle von m142 und m143 bei der Regulation der viralen Transkription ausgeschlossen werden. In Experimenten, in denen Zellen metabolisch markiert wurden, wurde gezeigt, daß die Gesamtproteinsynthese zu späten Zeitpunkten nach Infektion mit den Virusmutanten gehemmt war. Des weiteren wurde eine Phosphorylierung der dsRNA-abhängigen Proteinkinase R (PKR) sowie des Zielproteins, des Translations Initiationsfaktors 2α (eIF2α), nachgewiesen. Dies läßt vermuten, daß m142 und m143 die PKR-vermittelte Stillegung der Proteinsynthese verhindern. Durch Expression des HCMV TRS1 Gens, einem bekannten Inhibitor der PKR-Aktivierung, konnte die Replikation der Virusmutanten wieder hergestellt werden. Dies unterstützt die Ansicht, daß m142 und m143 für die Inhibition der Angeborenen Immunanwort der infizierten Wirtszelle erforderlich sind. KW - Maus KW - Cytomegalie-Virus KW - Genanalyse KW - murine cytomegalovirus KW - essential genes KW - US22 gene family KW - PKR KW - protein synthesis shut down KW - innate immune response Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20215 ER - TY - THES A1 - Cam, Hakan T1 - The role of p53 family members in myogenic differentiation and rhabdomyosarcoma development N2 - Krebserkrankungen zeichnen sich häufig durch Störungen zellulärer Differenzierungsprozesse aus. So weisen Rhabdomyosarkome, die aus Muskelvorläuferzellen hervorgehen, Differenzierungsdefekte auf, die zur unkontrollierten Proliferation der Tumorzellen führen. Bislang ist ungeklärt, ob die Differenzierungsdefekte auf der verstärkten Expression von Inhibitoren, der defekten Funktion von Aktivatoren oder einer Kombination von beidem beruht. In dieser Arbeit wird gezeigt, dass im Unterschied zu normalen Muskelzellen RMS-Zellen verstärkt DeltaNp73, einen Pan-Inhibitor der p53-Tumorsuppressorfamilie, exprimieren. Die experimentelle Überexpression von DeltaNp73 in normalen Myoblasten blockierte die Muskeldifferenzierung und förderte in Kombination mit klassischen RMS-Onkogenen wie IGF2 oder PAX3/FKHR die maligne Transformation. Umgekehrt führte die Hemmung von DeltaNp73 durch RNAi zur Reduktion der Tumorigenität von RMS-Tumorzellen. Da DeltaNp73 als dominant-negativer Inhibitor der p53-Familie wirkt, lies die Hemmung von Differenzierungsprozessen durch DeltaNp73 vermuten, dass die p53-Familienmitglieder (p53, p63, und p73) an der Regulation der Muskeldifferenzierung beteiligt sind. Tatsächlich konnte in dieser Arbeit gezeigt werden, dass die drei p53-Familienmitglieder bei der Induktion später Differenzierungsstadien kooperieren, indem sie die Aktivität des Retinoblastoma-Proteins RB regulieren. Die Funktion von RB ist bekanntermassen sowohl für den permanenten Zellzyklusarrest als auch für die Aktivierung Muskel-spezifischer Gene notwendig. Während p53 die Proteinspiegel von RB reguliert, kontrollieren p63 und p73 den Aktivierungsgrad von RB, indem sie dessen Phoshphorylierungszustand über den Zyklin-abhängigen Kinaseinhibitor p57KIP2 modifizieren. Eine Hemmung dieser Funktionen blockiert das Differenzierungsprogramm und fördert die Tumorentstehung. Die Aktivierung zellulärer Differenzierungsprozesse stellt somit einen entscheidenden Bestandteil der Tumorsuppressoraktivität der p53-Familie dar und liefert eine Erklärung für die Häufigkeit von Mutationen im p53-Signalweg bei Rhabdomyosarkom-Patienten. N2 - Disruption of differentiation pathways is one of the hallmarks of cancer. In rhabdomyosarcoma (RMS), a human tumor arising from myogenic precursors, the muscle differentiation program is disabled resulting in uncontrolled proliferation. Whether the differentiation block is due to overexpression of inhibitors, deficient function of activators, or both remained unknown. This study shows that RMS cells but not non-neoplastic muscle cells overexpress DeltaNp73, a pan-inhibitor of the p53 family of tumor suppressor genes. Experimental overexpression of DeltaNp73 in normal muscle precursor cells inhibited myogenic differentiation and promoted malignant transformation in cooperation with the RMS oncogenes IGF2 and PAX3/FKHR. Vice versa, RNAi knockdown of DeltaNp73 reduced the tumorigenicity of established RMS tumor cells. As DeltaNp73 is a dominant-negative inhibitor of the p53 family, inhibition of differentiation by DeltaNp73 suggests that the p53 family members (p53, p63 and p73) are critically involved in myogenic differentiation control. Indeed, this study demonstrates that all three p53 family members cooperate to activate the late stages of the differentiation process by regulating the activity of the retinoblastoma protein RB. The function of RB is known to be required for both the permanent cell cycle exit and the activation of muscle-specific genes. Whereas p53 regulates RB protein levels, p63 and p73 control the activation state of RB by modifying its phosphorylation via the cyclin-dependent kinase inhibitor p57KIP2. Ablation of these p53 family functions blocks the differentiation program and promotes malignant transformation. Induction of cellular differentiation therefore contributes to the tumor suppressor activities of the p53 family and provides an explanation for the high frequency of p53 pathway alterations in rhabdomyosarcoma patients. KW - Rhabdomyosarkom KW - Muskelzelle KW - Zelldifferenzierung KW - Genexpression KW - p53 KW - p63 KW - p73 KW - myogenic differentiation KW - rhabdomyosarcoma development KW - p53 KW - p63 KW - p73 KW - myogenic differentiation KW - rhabdomyosarcoma development Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20240 ER - TY - THES A1 - Gromova, Kira V. T1 - Visualization of the Smad direct signaling response to Bone Morphogenetic Protein 4 activation with FRET-based biosensors T1 - Visualisierung der Smad-vermittelten Signaltransduktion nach Aktivierung mit "Bone Morphogenetic Protein" 4 mittels FRET-basierter Biosensoren N2 - The Transforming Growth Factor (TGF) superfamily of cytokines and their serine/threonine kinase receptors play an important role in the regulation of cell division, differentiation, adhesion, migration, organization, and death. Smad proteins are the major intracellular signal transducers for the TGF receptor superfamily that mediate the signal from the membrane into the nucleus. Bone Morphogenetic Protein-4 (BMP-4) is a representative of the TGF superfamily, which regulates the formation of teeth, limbs and bone, and also plays a role in fracture repair. Binding of BMP-4 to its receptor stimulates phosphorylation of Smad1, which subsequently recruits Smad4. A hetero-oligomeric complex consisting of Smad1 and Smad4 then translocates into the nucleus and regulates transcription of target genes by interacting with transcription factors. Although the individual steps of the signaling cascade from the receptor to the nucleus have been identified, the exact kinetics and the rate limiting step(s) have remained elusive. Standard biochemical techniques are not suitable for resolving these issues, as they do not offer sufficiently high sensitivity and temporal resolution. In this study, advanced optical techniques were used for direct visualization of Smad signaling in live mammalian cells. Novel fluorescent biosensors were developed by fusing cyan and yellow fluorescent proteins to the signaling molecules Smad1 and Smad4. By measuring Fluorescence Resonance Energy Transfer (FRET) between the two fluorescent proteins, the kinetics of BMP/Smad signaling was unraveled. A rate-limiting delay of 2 - 5 minutes occurred between BMP receptor stimulation and Smad1 activation. A similar delay was observed in the complex formation between Smad1 and Smad4. Further experimentation indicated that the delay is dependent on the Mad homology 1 (MH1) domain of Smad1. These results give new insights into the dynamics of the BMP receptor – Smad1/4 signaling process and provide a new tool for studying Smads and for testing inhibitory drugs. N2 - Die Transforming Growth Factor" (TGF)-Superfamilie der Cytokine und ihrer Serin/Threonin-Kinase-Rezeptoren spielt eine bedeutende Rolle bei der Regulierung der Zellteilung, -differenzierung, -adhäsion, -migration, -organisation, und beim Zelltod. Die Smad-Proteine sind die wichtigsten intrazellulären Signalüberträger für die TGF-Rezeptor-Familie, da sie das Signal von der Zellmembran zum Kern übermitteln. Das ,,Bone Morphogenetic Protein4" (BMP-4) ist ein Vertreter der TGF-Familie, der die Bildung von Zähnen, Gliedmaßen und Knochen reguliert und darüber hinaus eine Rolle bei der Frakturheilung spielt. Das Binden von BMP-4 an seinen Rezeptor stimuliert die Phosphorylierung von Smad1, welches in der Folge Smad4 rekrutiert. Ein hetero-oligomerer Komplex bestehend aus Smad1 und Smad4 verlagert sich dann in den Zellkern, wo er durch Interaktion mit Transkriptionsfaktoren die Transkription von Zielgenen reguliert. Obwohl die einzelnen Schritte der Signalkaskade vom Rezeptor bis in den Zellkern bereits identifiziert wurden, blieben die Kinetik und die geschwindigkeitsbegrenzenden Schritte bisher unbekannt. Gängige biochemische Methoden eignen sich nicht um diese Fragen zu lösen, da sie nicht über ausreichende Empfindlichkeit und zeitliches Auflösungsvermögen verfügen. In der vorliegenden Arbeit wurden hochentwickelte optische Techniken angewandt, um die Smad-vermittelte Signaltransduktion direkt in lebenden Zellen sichtbar zu machen. Neue fluoreszierende Biosensoren wurden konstruiert, indem gelb- und cyan-fluoreszierende Proteine mit den Signalmoleküle Smad1 und Smad4 fusioniert wurden. Durch Messung des "Fluorescent Resonance Energy Transfer" (FRET) zwischen den zwei fluoreszierenden Proteinen konnte die Kinetik der BMP-Smad-Signalkaskade bestimmt werden. Zwischen der Stimulation des Rezeptors und der Aktivierung von Smad1 trat eine geschwindigkeitsbegrenzende Verzögerung von 2-5 Minuten auf. Eine ähnliche Verzögerung wurde bei der Bildung des Komplexes aus Smad1 und Smad4 beobachtet. Weitere Experimente zeigten, dass die Verzögerung von der Mad-Homologie-Domäne 1 (MH1) von Smad1 abhängt. Die Ergebnisse dieser Arbeit geben neue Einblicke in die Dynamik der BMP-Rezeptor-Smad1/4 Signaltransduktion und stellen neue Werkzeuge zur Untersuchung von Smads und zur Austestung inhibitorischer Wirkstoffe zur Verfügung. KW - FRET KW - Mikroskopie KW - Signaltransduktion KW - Smad KW - BMP KW - FRET KW - microscopy KW - signaling KW - Smad KW - bone morphogenetic protein KW - fluorescent protein Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-25855 ER - TY - THES A1 - Mack, Claudia T1 - Inhibition des programmierten Zelltodes und proinflammatorischer Signale durch das Cytomegalovirus-Protein M45 T1 - Inhibition of programmed cell death an proinflammatory signals by the cytomegalovirus protein M45 N2 - Die angeborene Immunität ist entstanden als Schutz gegenüber einer Vielzahl schädigender Einflüsse, denen ein Organismus ausgesetzt ist, und dient im Besonderen der sofortigen Abwehr von Krankheitserregern. Sie basiert auf der Funktion verschiedener keimbahnkodierter Rezeptoren und Sensoren, wie etwa den Toll-like Rezeptoren, die bestimmte fremdartige Strukturen der Krankheitserreger erkennen und daraufhin diverse Immunabwehrmechanismen auslösen. Hierbei kann die Detektion der Fremdstrukturen zum einen über die Aktivierung von Transkriptionsfaktoren, wie AP-1, NF-kB und IRFs, die Produktion antiviraler und proinflammatorischer Zytokine verursachen, welche daraufhin auf andere Zellen einwirken. Zum anderen kann die Detektion der Fremdstrukturen auch direkte immunologische Effektorfunktionen in der betroffenen Zelle auslösen. Die diversen Signale der Zytokin- und Detektionsrezeptoren münden in gemeinsamen Signalwegen, die daraufhin zur Induktion der verschiedenen Immuneffektorfunktionen führen. Häufig kommt es zunächst zu einer Aktivierung von NF-kB, was der antiviralen Abwehr, der Beseitigung anderer Störungen und dem Überleben der Zelle unter Stress dient. Wenn der schädigende Einfluss zu lange anhält, kann es stattdessen zur Initiation des programmierten Zelltodes kommen. Der programmierte Zelltod wird als sehr effektive Abwehrstrategie vielzelliger Organismen betrachtet, welcher die Ausbreitung intrazellulärer Erreger im Körper verhindert. Dies beruht darauf, dass die betroffene Zelle abstirbt, bevor der Erreger in der Lage ist, sich zu vervielfältigen und auf benachbarte Zellen zu übertragen. Da Viren als intrazelluläre Parasiten jedoch auf den Metabolismus ihrer Wirtszellen angewiesen sind, mussten sie im Laufe ihrer Evolution vielseitige Immunevasionsfunktionen etablieren, um sich trotz der effektiven antiviralen Wirksamkeit der angeborenen Immunität in den Wirtszellen vermehren zu können. In dieser Arbeit konnte ein vielseitiger Immunevasionsmechanismus des murinen Cytomegalovirus aufgedeckt werden. Am Anfang der Arbeit stand die Beobachtung, dass rekombinante murine Cytomegaloviren, die kein funktionsfähiges M45-Protein exprimieren, nicht mehr in der Lage waren, sich in Endothelzellkulturen auszubreiten, was auf die vorzeitige Induktion des programmierten Zelltodes zurückgeführt wurde. Der Mechanismus, wie das murine Cytomegalovirus-Protein M45 die Einleitung des programmierten Zelltodes verhindert, sollte in dieser Arbeit aufgeklärt werden. In ersten Untersuchungen konnte bestätigt werden, dass M45 tatsächlich in der Lage ist, infizierte Zellen vor Todesrezeptor-vermitteltem Zelltod zu schützen. Über die Analyse von M45-Interaktionspartnern wurde daraufhin aufgedeckt, dass M45 das zentrale zelluläre Adapterprotein RIP1 angreift, welches an einem Schnittpunkt verschiedener immunologischer Detektionssysteme und Zytokinsignalwege steht. Durch die Bindung an 5 RIP1 kann M45 die Aktivierung des Transkriptionsfaktors NF-kB nach Stimulation des TLR3 unterbinden, was wahrscheinlich eine wichtige Rolle bei der Detektion einer CMV-Infektion spielt. Des Weiteren inhibiert M45 die Aktivierung von NF-kB und der p38 MAP-Kinase nach TNF-a-Stimulation. Die vermutlich wichtigste Funktion hingegen, die M45 durch die Inhibition von RIP1 ausübt, ist die Verhinderung des Caspase-unabhängigen programmierten Zelltodes infizierter Zellen nach Einwirkung von TNF-a. Diese Funktion erklärt den ursprünglich beobachteten Phänotyp der M45-Deletionsmutante. Es konnte gezeigt werden, dass M45 diese wichtigen Immunevasionsfunktionen allein ohne weitere virale Proteine erfüllen kann. Sowohl für die Bindung an RIP1 als auch für die Inhibition der TNF-a-induzierten NF-kB-Aktivierung scheint nur der C-terminale Teil des M45 benötigt zu werden. Als molekulare Grundlage konnte nachgewiesen werden, dass M45 die Ubiquitinierung von RIP1 verhindert, welche als Stimulus-abhängige Aktivierung dieses Adapterproteins betrachtet wird. Auf diese Weise werden die verschiedenen RIP1- abhängigen Signalwege von M45 blockiert. Diese Inhibition RIP1-abhängiger Signalwege durch das MCMV-Protein M45 stellt einen neuen viralen Evasionsmechanismus dar, mit dem gleichzeitig mehrere antivirale und proinflammatorische Signalwege inhibiert werden können und der vermutlich entscheidend zur erfolgreichen Vermehrung und Pathogenese des murinen Cytomegalovirus beiträgt. N2 - Innate immunity has evolved as protection against the multitude of harmful influences which an organism encounters and serves in particular the immediate defence against pathogens. It is based on different germ line-encoded receptors and sensors, as for example Toll-like receptors, which detect specific foreign structures on pathogens and activate diverse immune defence mechanisms. On the one hand the detection of foreign structures can lead via activation of transcription factors such as NF-kB, AP-1 and IRFs to the production of proinflammatory and antiviral cytokines, which in turn act on neighbouring cells. On the other hand the detection of foreign structures can cause direct immunological effector functions in the primary cell. The various signals of detection and cytokine receptors combine in common signalling pathways which induce different immune effector functions. This usually results in initial activation of NF-kB, which serves the antiviral defence, the elimination of other disturbances and the survival of the cell under stress. When the harmful impact lasts too long, it can result instead in the initiation of programmed cell death. Programmed cell death is regarded as very effective defence strategy of multicellular organisms which anticipates the spread of intracellular pathogens in the body. This is based on the fact that the infected cell dies before the pathogen is able to proliferate and spread to neighbouring cells. 6 Since viruses as intracellular pathogens rely on the host cell’s metabolism, they had to establish miscellaneous immune evasion mechanisms during their evolution, to be able to replicate in host cells regardless of the effective antiviral potency of innate immunity. This study revealed an impressively versatile immune evasion mechanism of murine cytomegalovirus. The project is based on the initial observation that recombinant murine cytomegaloviruses which lack a functional M45 protein were not anymore able to replicate in endothelial cell cultures, which was attributed to premature initiation of programmed cell death. The aim of this study was to reveal the mechanism how the murine cytomegalovirus protein M45 prevents the induction of programmed cell death. First experiments confirmed that M45 was able to protect infected cells from death receptor induced programmed cell death. Through the analysis of M45 interaction partners it was discovered that M45 impedes the cellular adapter protein RIP1, which stands at the intersection of different immunological detection systems and cytokine signalling pathways. Through binding to RIP1 M45 is able to prevent the activation of NF-kB after stimulation of TLR3, which probably plays an important role for the detection of cytomegalovirus infections. Furthermore M45 inhibits the activation of NF-kB and the p38 MAP kinase after stimulation with TNF-a. However the presumably most important function which M45 fulfils by interacting with RIP1 is the inhibition of TNF-a induced caspase-independent programmed cell death of infected cells. This function accounts for the originally observed phenotype of the M45 deletion mutant. It has been shown that M45 is able to fulfil this function on its own without other viral proteins. For the binding to RIP1 as well as for the inhibition of TNF-a-induced NF-kB activation just the C-terminal part of M45 seems to be necessary. As molecular basis it was found that M45 inhibits the ubiquitination of RIP1 which is considered as stimulus-dependent activation of this adapter protein. In this way the different RIP1-dependent signalling cascades are blocked. This inhibition of RIP1-dependent signalling pathways by the MCMV protein M45 presents a new viral immune evasion mechanism, which inhibits several antiviral and proinflammatory signalling cascades at once and which probably contributes decisively to successful propagation and pathogenesis of murine Cytomegalovirus. Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-28860 ER -