TY - JOUR A1 - Maihoff, Fabienne A1 - Friess, Nicolas A1 - Hoiss, Bernhard A1 - Schmid‐Egger, Christian A1 - Kerner, Janika A1 - Neumayer, Johann A1 - Hopfenmüller, Sebastian A1 - Bässler, Claus A1 - Müller, Jörg A1 - Classen, Alice T1 - Smaller, more diverse and on the way to the top: Rapid community shifts of montane wild bees within an extraordinary hot decade JF - Diversity and Distributions N2 - Aim Global warming is assumed to restructure mountain insect communities in space and time. Theory and observations along climate gradients predict that insect abundance and richness, especially of small‐bodied species, will increase with increasing temperature. However, the specific responses of single species to rising temperatures, such as spatial range shifts, also alter communities, calling for intensive monitoring of real‐world communities over time. Location German Alps and pre‐alpine forests in south‐east Germany. Methods We empirically examined the temporal and spatial change in wild bee communities and its drivers along two largely well‐protected elevational gradients (alpine grassland vs. pre‐alpine forest), each sampled twice within the last decade. Results We detected clear abundance‐based upward shifts in bee communities, particularly in cold‐adapted bumble bee species, demonstrating the speed with which mobile organisms can respond to climatic changes. Mean annual temperature was identified as the main driver of species richness in both regions. Accordingly, and in large overlap with expectations under climate warming, we detected an increase in bee richness and abundance, and an increase in small‐bodied species in low‐ and mid‐elevations along the grassland gradient. Community responses in the pre‐alpine forest gradient were only partly consistent with community responses in alpine grasslands. Main Conclusion In well‐protected temperate mountain regions, small‐bodied bees may initially profit from warming temperatures, by getting more abundant and diverse. Less severe warming, and differences in habitat openness along the forested gradient, however, might moderate species responses. Our study further highlights the utility of standardized abundance data for revealing rapid changes in bee communities over only one decade. KW - Alps KW - altitudinal gradient KW - body size KW - climate change KW - global warming KW - hymenoptera KW - pollinator KW - range shifts Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312126 VL - 29 IS - 2 ER - TY - RPRT A1 - Müller, Jörg A1 - Scherer-Lorenzen, Michael A1 - Ammer, Christian A1 - Eisenhauer, Nico A1 - Seidel, Dominik A1 - Schuldt, Bernhard A1 - Biedermann, Peter A1 - Schmitt, Thomas A1 - Künzer, Claudia A1 - Wegmann, Martin A1 - Cesarz, Simone A1 - Peters, Marcell A1 - Feldhaar, Heike A1 - Steffan-Dewenter, Ingolf A1 - Claßen, Alice A1 - Bässler, Claus A1 - von Oheimb, Goddert A1 - Fichtner, Andreas A1 - Thorn, Simon A1 - Weisser, Wolfgang T1 - BETA-FOR: Erhöhung der strukturellen Diversität zwischen Waldbeständen zur Erhöhung der Multidiversität und Multifunktionalität in Produktionswäldern. Antragstext für die DFG Forschungsgruppe FOR 5375 T1 - BETA-FOR: Enhancing the structural diversity between patches for improving multidiversity and multifunctionality in production forests. Proposal for DFG Research Unit FOR 5375 BT - β\(_4\) : Proposal for the 1st phase (2022-2026) of the DFG Research Unit FOR 5375/1 (DFG Forschergruppe FOR 5375/1 – BETA-FOR), Fabrikschleichach, October 2021 N2 - Der in jüngster Zeit beobachtete kontinuierliche Verlust der β-Diversität in Ökosystemen deutet auf homogene Gemeinschaften auf Landschaftsebene hin, was hauptsächlich auf die steigende Landnutzungsintensität zurückgeführt wird. Biologische Vielfalt ist mit zahlreichen Funktionen und der Stabilität von Ökosystemen verknüpft. Es ist daher zu erwarten, dass eine abnehmende β-Diversität auch die Multifunktionalität verringert. Wir kombinieren hier Fachwissen aus der Forstwissenschaft, der Ökologie, der Fernerkundung, der chemischen Ökologie und der Statistik in einem gemeinschaftlichen und experimentellen β-Diversitätsdesign, um einerseits die Auswirkungen der Homogenisierung zu bewerten und andererseits Konzepte zu entwickeln, um negative Auswirkungen durch Homogenisierung in Wäldern rückgängig zu machen. Konkret werden wir uns mit der Frage beschäftigen, ob die Verbesserung der strukturellen β-Komplexität (ESBC) in Wäldern durch Waldbau oder natürliche Störungen die Biodiversität und Multifunktionalität in ehemals homogenen Produktionswäldern erhöhen kann. Unser Ansatz wird mögliche Mechanismen hinter den beobachteten Homogenisierungs-Diversitäts-Beziehungen identifizieren und zeigen, wie sich diese auf die Multifunktionalität auswirken. An elf Standorten in ganz Deutschland haben wir dazu zwei Waldbestände als zwei kleine "Waldlandschaften" ausgewählt. In einem dieser beiden Bestände haben wir ESBC (Enhancement of Structural Beta Complexity)-Behandlungen durchgeführt. Im zweiten, dem Kontrollbestand, werden wir die gleich Anzahl 50x50m Parzellen ohne ESBC einrichten. Auf allen Parzellen werden wir 18 taxonomische Artengruppen aller trophischer Ebenen und 21 Ökosystemfunktionen, einschließlich der wichtigsten Funktionen in Wäldern der gemäßigten Zonen, messen. Der statistische Rahmen wird eine umfassende Analyse der Biodiversität ermöglichen, indem verschiedenen Aspekte (taxonomische, funktionelle und phylogenetische Vielfalt) auf verschiedenen Skalenebenen (α-, β-, γ-Diversität) quantifiziert werden. Um die Gesamtdiversität zu kombinieren, werden wir das Konzept der Multidiversität auf die 18 Taxa anwenden. Wir werden neue Ansätze zur Quantifizierung und Aufteilung der Multifunktionalität auf α- und β-Skalen verwenden und entwickeln. Durch die experimentelle Beschreibung des Zusammenhangs zwischen β-Diversität und Multifunktionalität in einer Reallandschaft wird unsere Forschung einen neuen Weg einschlagen. Darüber hinaus werden wir dazu beitragen, verbesserte Leitlinien für waldbauliche Konzepte und für das Management natürlicher Störungen zu entwickeln, um Homogenisierungseffekte der Vergangenheit umzukehren. N2 - The recently observed consistent loss of β-diversity across ecosystems indicates increasingly homogeneous communities in patches of landscapes, mainly caused by increasing land-use intensity. Biodiversity is related to numerous ecosystem functions and stability. Therefore, decreasing β-diversity is also expected to reduce multifunctionality. To assess the impact of homogenization and to develop guidelines to reverse its potentially negative effects, we combine expertise from forest science, ecology, remote sensing, chemical ecology and statistics in a collaborative and experimental β-diversity approach. Specifically, we will address the question whether the Enhancement of Structural Beta Complexity (ESBC) in forests by silviculture or natural disturbances will increase biodiversity and multifunctionality in formerly homogeneously structured production forests. Our approach will identify potential mechanisms behind observed homogenization-diversity-relationships and show how these translate into effects on multifunctionality. At eleven forest sites throughout Germany, we selected two districts as two types of small ‘forest landscapes’. In one of these two districts, we established ESBC treatments (nine differently treated 50x50 m patches with a focus on canopy cover and deadwood features). In the second, the control district, we will establish nine patches without ESBC. By a comprehensive sampling, we will monitor 18 taxonomic groups and measure 21 ecosystem functions, including key functions in temperate forests, on all patches. The statistical framework will allow a comprehensive biodiversity assessment by quantifying the different aspects of multitrophic biodiversity (taxonomical, functional and phylogenetic diversity) on different levels of biodiversity (α-, β-, γ-diversity). To combine overall diversity, we will apply the concept of multidiversity across the 18 taxa. We will use and develop new approaches for quantification and partitioning of multifunctionality at α- and β- scales. Overall, our study will herald a new research avenue, namely by experimentally describing the link between β-diversity and multifunctionality. Furthermore, we will help to develop guidelines for improved silvicultural concepts and concepts for management of natural disturbances in temperate forests reversing past homogenization effects. KW - Waldökosystem KW - Biodiversität KW - BETA-Multifunktionalität KW - beta-multifunctionality KW - BETA-Diversität KW - beta diversity KW - Forschungsstation Fabrikschleichach Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290849 ER - TY - JOUR A1 - Heidrich, Lea A1 - Pinkert, Stefan A1 - Brandl, Roland A1 - Bässler, Claus A1 - Hacker, Hermann A1 - Roth, Nicolas A1 - Busse, Annika A1 - Müller, Jörg A1 - Friess, Nicolas T1 - Noctuid and geometrid moth assemblages show divergent elevational gradients in body size and color lightness JF - Ecography N2 - Previous macroecological studies have suggested that larger and darker insects are favored in cold environments and that the importance of body size and color for the absorption of solar radiation is not limited to diurnal insects. However, whether these effects hold true for local communities and are consistent across taxonomic groups and sampling years remains unexplored. This study examined the variations in body size and color lightness of the two major families of nocturnal moths, Geometridae and Noctuidae, along an elevational gradient of 700 m in Southern Germany. An assemblage-based analysis was performed using community-weighted means and a fourth-corner analysis to test for variations in color and body size among communities as a function of elevation. This was followed by a species-level analysis to test whether species occurrence and abundance along an elevation gradient were related to these traits, after controlling for host plant availability. In both 2007 and 2016, noctuid moth assemblages became larger and darker with increasing elevation, whereas geometrids showed an opposite trend in terms of color lightness and no clear trend in body size. In single species models, the abundance of geometrids, but not of noctuids, was driven by habitat availability. In turn, the abundance of dark-colored noctuids, but not geometrids increased with elevation. While body size and color lightness affect insect physiology and the ability to cope with harsh conditions, divergent trait–environment relationships between both families underline that findings of coarse-scale studies are not necessarily transferable to finer scales. Local abundance and occurrence of noctuids are shaped by morphological traits, whereas that of geometrids are rather shaped by local habitat availability, which can modify their trait–environment-relationship. We discuss potential explanations such as taxon-specific flight characteristics and the effect of microclimatic conditions. KW - insects KW - color lightness KW - body size KW - elevation KW - habitat availability KW - flight characteristics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256694 VL - 44 IS - 8 ER - TY - JOUR A1 - Bässler, Claus A1 - Brandl, Roland A1 - Müller, Jörg A1 - Krah, Franz S. A1 - Reinelt, Arthur A1 - Halbwachs, Hans T1 - Global analysis reveals an environmentally driven latitudinal pattern in mushroom size across fungal species JF - Ecology Letters N2 - Although macroecology is a well‐established field, much remains to be learned about the large‐scale variation of fungal traits. We conducted a global analysis of mean fruit body size of 59 geographical regions worldwide, comprising 5340 fungal species exploring the response of fruit body size to latitude, resource availability and temperature. The results showed a hump‐shaped relationship between mean fruit body size and distance to the equator. Areas with large fruit bodies were characterised by a high seasonality and an intermediate mean temperature. The responses of mutualistic species and saprotrophs were similar. These findings support the resource availability hypothesis, predicting large fruit bodies due to a seasonal resource surplus, and the thermoregulation hypothesis, according to which small fruit bodies offer a strategy to avoid heat and cold stress and therefore occur at temperature extremes. Fruit body size may thus be an adaptive trait driving the large‐scale distribution of fungal species. KW - Fungal traits KW - global biomes KW - latitudinal gradient KW - mean fruit body size KW - saprobic and ectomycorrhizal basidiomycetes Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239808 VL - 24 IS - 4 SP - 658 EP - 667 ER - TY - JOUR A1 - Roth, Nicolas A1 - Doerfler, Inken A1 - Bässler, Claus A1 - Blaschke, Markus A1 - Bussler, Heinz A1 - Gossner, Martin M. A1 - Heideroth, Antje A1 - Thorn, Simon A1 - Weisser, Wolfgang W. A1 - Müller, Jörg T1 - Decadal effects of landscape-wide enrichment of dead wood on saproxylic organisms in beech forests of different historic management intensity JF - Diversity and Distributions N2 - Aim: European temperate forests have lost dead wood and the associated biodiversity owing to intensive management over centuries. Nowadays, some of these forests are being restored by enrichment with dead wood, but mostly only at stand scales. Here, we investigated effects of a seminal dead-wood enrichment strategy on saproxylic organisms at the landscape scale. Location: Temperate European beech forest in southern Germany. Methods: In a before-after control-impact design, we compared assemblages and gamma diversities of saproxylic organisms in strictly protected old-growth forest areas (reserves) and historically moderately and intensively managed forest areas before and a decade after starting a landscape-wide strategy of dead-wood enrichment. Results: Before enrichment with dead wood, the gamma diversity of saproxylic organisms in historically intensively managed forest stands was significantly lower than in reserves and historically moderately managed forest stands; this difference disappeared after 10 years of dead-wood enrichment. The species composition of beetles in forest stands of the three historical management intensities differed before the enrichment strategy, but a decade thereafter, the species compositions of previously intensively logged and forest reserve plots were similar. However, the differences in fungal species composition between historical management categories before and after 10 years of enrichment persisted. Main conclusions: Our results demonstrate that intentional enrichment of dead wood at the landscape scale is a powerful tool for rapidly restoring saproxylic beetle communities and for restoring wood-inhabiting fungal communities, which need longer than a decade for complete restoration. We propose that a strategy of area-wide active restoration combined with some permanent strict refuges is a promising means of promoting the biodiversity of age-long intensively managed Central European beech forests. KW - dead-wood enrichment KW - integrative management strategy KW - land sharing KW - lowland beech forests KW - saproxylic organisms Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227061 VL - 25 IS - 3 ER - TY - JOUR A1 - Müller, Jörg A1 - Ulyshen, Mike A1 - Seibold, Sebastian A1 - Cadotte, Marc A1 - Chao, Anne A1 - Bässler, Claus A1 - Vogel, Sebastian A1 - Hagge, Jonas A1 - Weiß, Ingmar A1 - Baldrian, Petr A1 - Tláskal, Vojtěch A1 - Thorn, Simon T1 - Primary determinants of communities in deadwood vary among taxa but are regionally consistent JF - Oikos N2 - The evolutionary split between gymnosperms and angiosperms has far‐reaching implications for the current communities colonizing trees. The inherent characteristics of dead wood include its role as a spatially scattered habitat of plant tissue, transient in time. Thus, local assemblages in deadwood forming a food web in a necrobiome should be affected not only by dispersal ability but also by host tree identity, the decay stage and local abiotic conditions. However, experiments simultaneously manipulating these potential community drivers in deadwood are lacking. To disentangle the importance of spatial distance and microclimate, as well as host identity and decay stage as drivers of local assemblages, we conducted two consecutive experiments, a 2‐tree species and 6‐tree species experiment with 80 and 72 tree logs, respectively, located in canopy openings and under closed canopies of a montane and a lowland forest. We sampled saproxylic beetles, spiders, fungi and bacterial assemblages from logs. Variation partitioning for community metrics based on a unified framework of Hill numbers showed consistent results for both studies: host identity was most important for sporocarp‐detected fungal assemblages, decay stage and host tree for DNA‐detected fungal assemblages, microclimate and decay stage for beetles and spiders and decay stage for bacteria. Spatial distance was of minor importance for most taxa but showed the strongest effects for arthropods. The contrasting patterns among the taxa highlight the need for multi‐taxon analyses in identifying the importance of abiotic and biotic drivers of community composition. Moreover, the consistent finding of microclimate as the primary driver for saproxylic beetles compared to host identity shows, for the first time that existing evolutionary host adaptions can be outcompeted by local climate conditions in deadwood. KW - deadwood experiments KW - dispersal KW - forest management KW - habitat filter KW - wood-inhabiting fungi Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228201 VL - 129 IS - 10 SP - 1579 EP - 1588 ER - TY - JOUR A1 - Doerfler, Inken A1 - Cadotte, Marc W. A1 - Weisser, Wolfgang W. A1 - Müller, Jörg A1 - Gossner, Martin M. A1 - Heibl, Christoph A1 - Bässler, Claus A1 - Thorn, Simon A1 - Seibold, Sebastian T1 - Restoration‐oriented forest management affects community assembly patterns of deadwood‐dependent organisms JF - Journal of Applied Ecology N2 - Land‐use intensification leads to loss and degradation of habitats and is thus a major driver of biodiversity loss. Restoration strategies typically focus on promoting biodiversity but often neglect that land‐use intensification could have changed the underlying mechanisms of community assembly. Since assembly mechanisms determine the diversity and composition of communities, we propose that evaluation of restoration strategies should consider effects of restoration on biodiversity and community assembly. Using a multi‐taxon approach, we tested whether a strategy that promotes forest biodiversity by restoring deadwood habitats also affects assembly patterns. We assessed saproxylic (i.e. deadwood‐dependent) beetles and fungi, as well as non‐saproxylic plants and birds in 68 beech forest plots in southern Germany, 8 years after the commencement of a restoration project. To assess changes in community assembly, we analysed the patterns of functional–phylogenetic diversity, community‐weighted mean (CWM) traits and their diversity. We hypothesized that restoration increases habitat amount and heterogeneity of deadwood and reduces canopy cover and thereby decreases the strength of environmental filters imposed by past silvicultural intensification, such as a low amount in deadwood. With the restoration of deadwood habitats, saproxylic beetle communities became less functionally–phylogenetically similar, whereas the assembly patterns of saproxylic fungi and non‐saproxylic taxa remained unaffected by deadwood restoration. Among the traits analysed, deadwood diameter niche position of species was most strongly affected indicating that the enrichment of large deadwood objects led to lower functional–phylogenetical similarity of saproxylic beetles. Community assembly and traits of plants were mainly influenced by microclimate associated with changes in canopy cover. Synthesis and applications. Our results indicate that the positive effects of deadwood restoration on saproxylic beetle richness are associated with an increase in deadwood amount. This might be linked to an increase in deadwood heterogeneity, and therefore decreasing management‐induced environmental filters. Deadwood enrichment can thus be considered an effective restoration strategy which reduces the negative effects of intense forest management on saproxylic taxa by not only promoting biodiversity but also by decreasing the environmental filters shaping saproxylic beetle communities, thus allowing the possibly for more interactions between species and a higher functional diversity. KW - assembly mechanisms KW - beech forest KW - community‐weighted mean KW - deadwood enrichment KW - habitat heterogeneity KW - restoration strategy KW - saproxylic species KW - species traits Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217918 VL - 57 IS - 12 SP - 2429 EP - 2440 ER - TY - JOUR A1 - Bae, Soyeon A1 - Heidrich, Lea A1 - Levick, Shaun R. A1 - Gossner, Martin M. A1 - Seibold, Sebastian A1 - Weisser, Wolfgang W. A1 - Magdon, Paul A1 - Serebryanyk, Alla A1 - Bässler, Claus A1 - Schäfer, Deborah A1 - Schulze, Ernst-Detlef A1 - Doerfler, Inken A1 - Müller, Jörg A1 - Jung, Kirsten A1 - Heurich, Marco A1 - Fischer, Markus A1 - Roth, Nicolas A1 - Schall, Peter A1 - Boch, Steffen A1 - Wöllauer, Stephan A1 - Renner, Swen C. A1 - Müller, Jörg T1 - Dispersal ability, trophic position and body size mediate species turnover processes: Insights from a multi-taxa and multi-scale approach JF - Diversity and Distribution N2 - Aim: Despite increasing interest in β-diversity, that is the spatial and temporal turnover of species, the mechanisms underlying species turnover at different spatial scales are not fully understood, although they likely differ among different functional groups. We investigated the relative importance of dispersal limitations and the environmental filtering caused by vegetation for local, multi-taxa forest communities differing in their dispersal ability, trophic position and body size. Location: Temperate forests in five regions across Germany. Methods: In the inter-region analysis, the independent and shared effects of the regional spatial structure (regional species pool), landscape spatial structure (dispersal limitation) and environmental factors on species turnover were quantified with a 1-ha grain across 11 functional groups in up to 495 plots by variation partitioning. In the intra-region analysis, the relative importance of three environmental factors related to vegetation (herb and tree layer composition and forest physiognomy) and spatial structure for species turnover was determined. Results: In the inter-region analysis, over half of the explained variation in community composition (23% of the total explained 35%) was explained by the shared effects of several factors, indicative of spatially structured environmental filtering. Among the independent effects, environmental factors were the strongest on average over 11 groups, but the importance of landscape spatial structure increased for less dispersive functional groups. In the intra-region analysis, the independent effect of plant species composition had a stronger influence on species turnover than forest physiognomy, but the relative importance of the latter increased with increasing trophic position and body size. Main conclusions: Our study revealed that the mechanisms structuring assemblage composition are associated with the traits of functional groups. Hence, conservation frameworks targeting biodiversity of multiple groups should cover both environmental and biogeographical gradients. Within regions, forest management can enhance β-diversity particularly by diversifying tree species composition and forest physiognomy. KW - body size KW - dispersal ability KW - environmental filtering KW - forest physiognomy KW - neutral processes KW - plant composition KW - regional species pool KW - species turnover KW - trophic position KW - β-diversity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236117 VL - 27 IS - 3 ER - TY - JOUR A1 - Thorn, Simon A1 - Chao, Anne A1 - Georgiev, Konstadin B. A1 - Müller, Jörg A1 - Bässler, Claus A1 - Campbell, John L. A1 - Jorge, Castro A1 - Chen, Yan-Han A1 - Choi, Chang-Yong A1 - Cobb, Tyler P. A1 - Donato, Daniel C. A1 - Durska, Ewa A1 - Macdonald, Ellen A1 - Feldhaar, Heike A1 - Fontaine, Jospeh B. A1 - Fornwalt, Paula J. A1 - Hernández Hernández, Raquel María A1 - Hutto, Richard L. A1 - Koivula, Matti A1 - Lee, Eun-Jae A1 - Lindenmayer, David A1 - Mikusinski, Grzegorz A1 - Obrist, Martin K. A1 - Perlík, Michal A1 - Rost, Josep A1 - Waldron, Kaysandra A1 - Wermelinger, Beat A1 - Weiß, Ingmar A1 - Zmihorski, Michal A1 - Leverkus, Alexandro B. T1 - Estimating retention benchmarks for salvage logging to protect biodiversity JF - Nature Communications N2 - Forests are increasingly affected by natural disturbances. Subsequent salvage logging, a widespread management practice conducted predominantly to recover economic capital, produces further disturbance and impacts biodiversity worldwide. Hence, naturally disturbed forests are among the most threatened habitats in the world, with consequences for their associated biodiversity. However, there are no evidence-based benchmarks for the proportion of area of naturally disturbed forests to be excluded from salvage logging to conserve biodiversity. We apply a mixed rarefaction/extrapolation approach to a global multi-taxa dataset from disturbed forests, including birds, plants, insects and fungi, to close this gap. We find that 757% (mean +/- SD) of a naturally disturbed area of a forest needs to be left unlogged to maintain 90% richness of its unique species, whereas retaining 50% of a naturally disturbed forest unlogged maintains 73 +/- 12% of its unique species richness. These values do not change with the time elapsed since disturbance but vary considerably among taxonomic groups. Salvage logging has become a common practice to gain economic returns from naturally disturbed forests, but it could have considerable negative effects on biodiversity. Here the authors use a recently developed statistical method to estimate that ca. 75% of the naturally disturbed forest should be left unlogged to maintain 90% of the species unique to the area. KW - natural disturbance KW - bird communities KW - forest KW - management KW - beetle KW - conservation KW - windthrow KW - diversity KW - impact KW - fire Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230512 VL - 11 ER - TY - JOUR A1 - Thorn, Simon A1 - Chao, Anne A1 - Bernhardt-Römermann, Markus A1 - Chen, Yan-Han A1 - Georgiev, Kostadin B. A1 - Heibl, Christoph A1 - Müller, Jörg A1 - Schäfer, Hanno A1 - Bässler, Claus T1 - Rare species, functional groups, and evolutionary lineages drive successional trajectories in disturbed forests JF - Ecology N2 - Following natural disturbances, additional anthropogenic disturbance may alter community recovery by affecting the occurrences of species, functional groups, and evolutionary lineages. However, our understanding of whether rare, common, or dominant species, functional groups, or evolutionary lineages are most strongly affected by an additional disturbance, particularly across multiple taxa, is limited. Here, we used a generalized diversity concept based on Hill numbers to quantify the community differences of vascular plants, bryophytes, lichens, wood‐inhabiting fungi, saproxylic beetles, and birds in a storm‐disturbed, experimentally salvage logged forest. Communities of all investigated species groups showed dissimilarities between logged and unlogged plots. Most species groups showed no significant changes in dissimilarities between logged and unlogged plots over the first seven years of succession, indicating a lack of community recovery. In general, the dissimilarities of communities were mainly driven by rare species. Convergence of dissimilarities occurred more often than divergence during the early stages of succession for rare species, indicating a major role in driving decreasing taxonomic dissimilarities between logged and unlogged plots over time. Trends in species dissimilarities only partially match the trends in dissimilarities of functional groups and evolutionary lineages, with little significant changes in successional trajectories. Nevertheless, common and dominant species contributed to a convergence of dissimilarities over time in the case of the functional dissimilarities of wood‐inhabiting fungi. Our study shows that salvage logging following disturbances can alter successional trajectories in early stages of forest succession following natural disturbances. However, community changes over time may differ remarkably in different taxonomic groups and are best detected based on taxonomic, rather than functional or phylogenetic dissimilarities. KW - wood-inhabiting fungi KW - birds KW - bryophytes KW - climate change KW - forest succession KW - Hill numbers KW - natural disturbances KW - salvage logging KW - saproxylic beetles KW - vascular plants Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212378 VL - 101 IS - 3 ER -