TY - JOUR A1 - Vangeel, Elise Beau A1 - Pishva, Ehsan A1 - Hompes, Titia A1 - van den Hove, Daniel A1 - Lambrechts, Diether A1 - Allegaert, Karel A1 - Freson, Kathleen A1 - Izzi, Benedetta A1 - Claes, Stephan T1 - Newborn genome-wide DNA methylation in association with pregnancy anxiety reveals a potential role for \(GABBR1\) JF - Clinical Epigenetics N2 - Background: There is increasing evidence for the role of prenatal stress in shaping offspring DNA methylation and disease susceptibility. In the current study, we aimed to identify genes and pathways associated with pregnancy anxiety using a genome-wide DNA methylation approach. Methods: We selected 22 versus 23 newborns from our Prenatal Early Life Stress (PELS) cohort, exposed to the lowest or highest degree of maternal pregnancy anxiety, respectively. Cord blood genome-wide DNA methylation was assayed using the HumanMethylation450 BeadChip (HM450, n = 45) and candidate gene methylation using EpiTYPER (n = 80). Cortisol levels were measured at 2, 4, and 12 months of age to test infant stress system (re)activity. Results: Data showed ten differentially methylated regions (DMR) when comparing newborns exposed to low versus high pregnancy anxiety scores. We validated a top DMR in the GABA-B receptor subunit 1 gene (GABBR1) revealing the association with pregnancy anxiety particularly in male newborns (most significant CpG Pearson R = 0.517, p = 0.002; average methylation Pearson R = 0.332, p = 0.039). Cord blood GABBR1 methylation was associated with infant cortisol levels in response to a routine vaccination at 4 months old. Conclusions: In conclusion, our results show that pregnancy anxiety is associated with differential DNA methylation patterns in newborns and that our candidate gene GABBR1 is associated with infant hypothalamic-pituitary-adrenal axis response to a stressor. Our findings reveal a potential role for GABBR1 methylation in association with stress and provide grounds for further research. KW - DNA methylation KW - GABBR1 KW - gender differences KW - HPA axis KW - pregnancy anxiety KW - prenatal stress Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173825 VL - 9 ER - TY - JOUR A1 - Westbury, Sarah K A1 - Turro, Ernest A1 - Greene, Daniel A1 - Lentaigne, Claire A1 - Kelly, Anne M A1 - Bariana, Tadbir K A1 - Simeoni, Ilenia A1 - Pillois, Xavier A1 - Attwood, Antony A1 - Austin, Steve A1 - Jansen, Sjoert BG A1 - Bakchoul, Tamam A1 - Crisp-Hihn, Abi A1 - Erber, Wendy N A1 - Favier, RĂ©mi A1 - Foad, Nicola A1 - Gattens, Michael A1 - Jolley, Jennifer D A1 - Liesner, Ri A1 - Meacham, Stuart A1 - Millar, Carolyn M A1 - Nurden, Alan T A1 - Peerlinck, Kathelijne A1 - Perry, David J A1 - Poudel, Pawan A1 - Schulman, Sol A1 - Schulze, Harald A1 - Stephens, Jonathan C A1 - Furie, Bruce A1 - Robinson, Peter N A1 - van Geet, Chris A1 - Rendon, Augusto A1 - Gomez, Keith A1 - Laffan, Michael A A1 - Lambert, Michele P A1 - Nurden, Paquita A1 - Ouwehand, Willem H A1 - Richardson, Sylvia A1 - Mumford, Andrew D A1 - Freson, Kathleen T1 - Human phenotype ontology annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained bleeding and platelet disorders JF - Genome Medicine N2 - Background: Heritable bleeding and platelet disorders (BPD) are heterogeneous and frequently have an unknown genetic basis. The BRIDGE-BPD study aims to discover new causal genes for BPD by high throughput sequencing using cluster analyses based on improved and standardised deep, multi-system phenotyping of cases. Methods: We report a new approach in which the clinical and laboratory characteristics of BPD cases are annotated with adapted Human Phenotype Ontology (HPO) terms. Cluster analyses are then used to characterise groups of cases with similar HPO terms and variants in the same genes. Results: We show that 60% of index cases with heritable BPD enrolled at 10 European or US centres were annotated with HPO terms indicating abnormalities in organ systems other than blood or blood-forming tissues, particularly the nervous system. Cases within pedigrees clustered closely together on the bases of their HPO-coded phenotypes, as did cases sharing several clinically suspected syndromic disorders. Cases subsequently found to harbour variants in ACTN1 also clustered closely, even though diagnosis of this recently described disorder was not possible using only the clinical and laboratory data available to the enrolling clinician. Conclusions: These findings validate our novel HPO-based phenotype clustering methodology for known BPD, thus providing a new discovery tool for BPD of unknown genetic basis. This approach will also be relevant for other rare diseases with significant genetic heterogeneity. KW - disease KW - thrombocytopenia KW - guidelines KW - complex Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143329 VL - 7 IS - 36 ER -