TY - JOUR A1 - Al-Hejailan, Reem A1 - Weigel, Tobias A1 - Schürlein, Sebastian A1 - Berger, Constantin A1 - Al-Mohanna, Futwan A1 - Hansmann, Jan T1 - Decellularization of full heart — optimizing the classical sodium-dodecyl-sulfate-based decellularization protocol JF - Bioengineering N2 - Compared to cell therapy, where cells are injected into a defect region, the treatment of heart infarction with cells seeded in a vascularized scaffold bears advantages, such as an immediate nutrient supply or a controllable and persistent localization of cells. For this purpose, decellularized native tissues are a preferable choice as they provide an in vivo-like microenvironment. However, the quality of such scaffolds strongly depends on the decellularization process. Therefore, two protocols based on sodium dodecyl sulfate or sodium deoxycholate were tailored and optimized for the decellularization of a porcine heart. The obtained scaffolds were tested for their applicability to generate vascularized cardiac patches. Decellularization with sodium dodecyl sulfate was found to be more suitable and resulted in scaffolds with a low amount of DNA, a highly preserved extracellular matrix composition, and structure shown by GAG quantification and immunohistochemistry. After seeding human endothelial cells into the vasculature, a coagulation assay demonstrated the functionality of the endothelial cells to minimize the clotting of blood. Human-induced pluripotent-stem-cell-derived cardiomyocytes in co-culture with fibroblasts and mesenchymal stem cells transferred the scaffold into a vascularized cardiac patch spontaneously contracting with a frequency of 25.61 ± 5.99 beats/min for over 16 weeks. The customized decellularization protocol based on sodium dodecyl sulfate renders a step towards a preclinical evaluation of the scaffolds. KW - tissue engineering KW - decellularization KW - vascularized scaffold KW - cardiac patch KW - dynamic culture Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270781 SN - 2306-5354 VL - 9 IS - 4 ER - TY - JOUR A1 - Ockermann, Philipp A1 - Lizio, Rosario A1 - Hansmann, Jan T1 - Healthberry 865\(^®\) and a subset of its single anthocyanins attenuate oxidative stress in human endothelial in vitro models JF - Nutrients N2 - Oxidative stress and inflammation play a pivotal role in the development of cardiovascular diseases, an ever-growing worldwide problem. As a non-pharmacological approach, diet, especially a flavonoid-rich diet, showed promising results in the reduction of cardiovascular diseases and alleviation of their symptoms. In this study, in vitro systems based on human microvascular endothelial cells (hmvEC) and human umbilical cord endothelial cells (HUVEC) were established to determine the effect of Healthberry 865\(^®\) (HB) and ten of its relating single anthocyanins on oxidative stress. Furthermore, five metabolites were used in order to examine the effect of anthocyanin's most common breakdown molecules. The results showed an effect of HB in both models after 24 h, as well as most of its single anthocyanins. Cyanidin-rutinoside, peonidin-galactoside, and petunidin-glucoside had a model-specific effect. For the metabolites, phloroglucinaldeyhde (PGA) showed an effect in both models, while vanillic acid (VA) only had an effect in HUVEC. When combined, a combination of several anthocyanins did not have a cumulative effect, except for combining glucosides in hmvEC. The combination of PGA and VA even revealed an inhibitive behavior. Overall, the study demonstrates the antioxidative effect of HB and several of its single anthocyanins and metabolites, which are partially model specific, and coincides with animal studies. KW - anthocyanins KW - reactive oxygen species KW - HUVEC KW - microvascular endothelial cells Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-281887 SN - 2072-6643 VL - 14 IS - 14 ER - TY - JOUR A1 - Weigel, Tobias A1 - Malkmus, Christoph A1 - Weigel, Verena A1 - Wußmann, Maximiliane A1 - Berger, Constantin A1 - Brennecke, Julian A1 - Groeber‐Becker, Florian A1 - Hansmann, Jan T1 - Fully Synthetic 3D Fibrous Scaffolds for Stromal Tissues—Replacement of Animal‐Derived Scaffold Materials Demonstrated by Multilayered Skin JF - Advanced Materials N2 - The extracellular matrix (ECM) of soft tissues in vivo has remarkable biological and structural properties. Thereby, the ECM provides mechanical stability while it still can be rearranged via cellular remodeling during tissue maturation or healing processes. However, modern synthetic alternatives fail to provide these key features among basic properties. Synthetic matrices are usually completely degraded or are inert regarding cellular remodeling. Based on a refined electrospinning process, a method is developed to generate synthetic scaffolds with highly porous fibrous structures and enhanced fiber‐to‐fiber distances. Since this approach allows for cell migration, matrix remodeling, and ECM synthesis, the scaffold provides an ideal platform for the generation of soft tissue equivalents. Using this matrix, an electrospun‐based multilayered skin equivalent composed of a stratified epidermis, a dermal compartment, and a subcutis is able to be generated without the use of animal matrix components. The extension of classical dense electrospun scaffolds with high porosities and motile fibers generates a fully synthetic and defined alternative to collagen‐gel‐based tissue models and is a promising system for the construction of tissue equivalents as in vitro models or in vivo implants. KW - 3D scaffolds KW - electrospinning KW - highly porous materials KW - multilayered skin KW - stromal tissues Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-276403 VL - 34 IS - 10 ER -