TY - JOUR A1 - Briegel, Wolfgang A1 - Hoyer, Juliane T1 - Psychiatric disorders and distal 21q deletion — a case report JF - International Journal of Environmental Research and Public Health N2 - Partial deletion of chromosome 21q is a very rare genetic condition with highly variable phenotypic features including heart defects, high or cleft palate, brain malformations (e.g., cerebral atrophy), developmental delay and intellectual disability. So far, there is very limited knowledge about psychiatric disorders and their effective treatment in this special population. To fill this gap, the authors present the case of an initially five-year-old girl with distal deletion (del21q22.2) and comorbid oppositional defiant disorder (main psychiatric diagnosis) covering a period of time of almost four years comprising initial psychological/psychiatric assessment, subsequent treatment with Parent–Child Interaction Therapy (PCIT), and follow-up assessments. Post-intervention results including a 19-month follow-up indicated good overall efficacy of PCIT and high parental satisfaction with the treatment. This case report makes a substantial contribution to enhancing knowledge on psychiatric comorbidity and its effective treatment in patients with terminal 21q deletion. Moreover, it emphasizes the necessity of multidisciplinarity in diagnosis and treatment due to the variety of anomalies associated with 21q deletion. Regular screenings for psychiatric disorders and (if indicated) thorough psychological and psychiatric assessment seem to be reasonable in most affected children, as children with developmental delays are at increased risk of developing psychiatric disorders. As demonstrated with this case report, PCIT seems to be a good choice to effectively reduce disruptive behaviors in young children with partial deletion of chromosome 21q. KW - chromosome 21 KW - distal deletion KW - 21q22.2-q22.3 KW - oppositional defiant disorder KW - attention deficit/hyperactivity disorder KW - Parent–Child Interaction Therapy (PCIT) KW - case report Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203769 SN - 1660-4601 VL - 17 IS - 9 ER - TY - JOUR A1 - Zahnleiter, Diana A1 - Uebe, Steffen A1 - Ekici, Arif B. A1 - Hoyer, Juliane A1 - Wiesener, Antje A1 - Wieczorek, Dagmar A1 - Kunstmann, Erdmute A1 - Reis, André A1 - Doerr, Helmuth-Guenther A1 - Rauch, Anita A1 - Thiel, Christian T. T1 - Rare Copy Number Variants Are a Common Cause of Short Stature JF - PLoS Genetics N2 - Human growth has an estimated heritability of about 80%-90%. Nevertheless, the underlying cause of shortness of stature remains unknown in the majority of individuals. Genome-wide association studies (GWAS) showed that both common single nucleotide polymorphisms and copy number variants (CNVs) contribute to height variation under a polygenic model, although explaining only a small fraction of overall genetic variability in the general population. Under the hypothesis that severe forms of growth retardation might also be caused by major gene effects, we searched for rare CNVs in 200 families, 92 sporadic and 108 familial, with idiopathic short stature compared to 820 control individuals. Although similar in number, patients had overall significantly larger CNVs \((p-value <1 x 10^{-7})\). In a gene-based analysis of all non-polymorphic CNVs >50 kb for gene function, tissue expression, and murine knock-out phenotypes, we identified 10 duplications and 10 deletions ranging in size from 109 kb to 14 Mb, of which 7 were de novo (p < 0.03) and 13 inherited from the likewise affected parent but absent in controls. Patients with these likely disease causing 20 CNVs were smaller than the remaining group (p < 0.01). Eleven (55%) of these CNVs either overlapped with known microaberration syndromes associated with short stature or contained GWAS loci for height. Haploinsufficiency (HI) score and further expression profiling suggested dosage sensitivity of major growth-related genes at these loci. Overall 10% of patients carried a disease-causing CNV indicating that, like in neurodevelopmental disorders, rare CNVs are a frequent cause of severe growth retardation. KW - genetic skeletal disorders KW - microdeletion syndrome KW - mental retardation KW - growth failure KW - deletion KW - classification KW - association KW - mutations KW - genome KW - abnormalities Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127645 SN - 1553-7404 VL - 9 IS - 3 ER -