TY - JOUR A1 - Rupp, Mira T. A1 - Auvray, Thomas A1 - Hanan, Garry S. A1 - Kurth, Dirk G. T1 - Electrochemical and photophysical study of homoleptic and heteroleptic methylated Ru(II) Bis-terpyridine complexes JF - European Journal of Inorganic Chemistry N2 - In this study, we investigate the impact of N-methylation on the electronic and photophysical properties of both homoleptic and heteroleptic Ru(II) bis-terpyridine complexes based on the recently reported ligand 4’-(4-bromophenyl)-4,4’’’: 4’’,4’’’’-dipyr-idinyl-2,2’ : 6’,2’’-terpyridine (Bipytpy), with pyridine substituents in the 4- and 4’’-position. The first reduction of the methylated complexes takes place at the pyridinium site and is observed as multi-electron process. Following N-methylation, the complexes exhibit higher luminescence quantum yields and longer excited-state lifetimes. Interestingly, the photophysical properties of the heteroleptic and homoleptic complexes are rather similar. TD-DFT calculations support the experimental results. Furthermore, the complexes are tested as photosensitizers for photocatalytic hydrogen production, as the parent complex 1[Ru(Bipytpy)(Tolyltpy)](PF \(_6\))\(_2\) (Tolyltpy: 4’-tolyl-2,2’: 6’,2’’-terpyri-dine) was recently shown to be active and highly stable underphotocatalytic conditions. However, the methylated complexes reported herein are inactive as photosensitizers under the chosen conditions, presumably due to loss of the methyl groups, converting them to the non-methylated parent complexes. KW - Ruthenium KW - Luminescence KW - Electrochemistry KW - Ligand effects KW - Photocatalysis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248769 VL - 2021 IS - 28 SP - 2822 EP - 2829 ER - TY - JOUR A1 - Belka, Janina A1 - Nickel, Joachim A1 - Kurth, Dirk G. T1 - Growth on metallo-supramolecular coordination polyelectrolyte (MEPE) stimulates osteogenic differentiation of human osteosarcoma cells (MG63) and human bone marrow derived mesenchymal stem cells JF - Polymers N2 - Background: Culturing of cells is typically performed on standard tissue culture plates generating growth conditions, which in general do not reflect the native three-dimensional cellular environment. Recent investigations provide insights in parameters, which strongly affect the general cellular behavior triggering essential processes such as cell differentiation. The physical properties of the used material, such as stiffness, roughness, or topology, as well as the chemical composition of the cell-surface interface are shown to play a key role in the initiation of particular cellular responses. Methods: We extended our previous research, which identified thin films of metallo-supramolecular coordination polyelectrolytes (MEPEs) as substrate to trigger the differentiation of muscular precursor cells. Results: Here, we show that the same MEPEs similarly stimulate the osteogenic differentiation of pre-osteoblasts. Remarkably, MEPE modified surfaces also trigger the differentiation of primary bone derived mesenchymal stem cells (BMSCs) towards the osteogenic lineage. Conclusion: This result leads to the conclusion that these surfaces individually support the specification of cell differentiation toward lineages that correspond to the natural commitment of the particular cell types. We, therefore, propose that Fe-MEPEs may be used as scaffold for the treatment of defects at least in muscular or bone tissue. KW - cell differentiation KW - metallo-supramolecular polymer KW - interface KW - iron metabolism Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197264 SN - 2073-4360 VL - 11 IS - 7 ER -