TY - JOUR A1 - Lu, Wei A1 - Jayaraman, Arumugam A1 - Fantuzzi, Felipe A1 - Dewhurst, Rian D. A1 - Härterich, Marcel A1 - Dietz, Maximilian A1 - Hagspiel, Stephan A1 - Krummenbacher, Ivo A1 - Hammond, Kai A1 - Cui, Jingjing A1 - Braunschweig, Holger T1 - An unsymmetrical, cyclic diborene based on a chelating CAAC ligand and its small-molecule activation and rearrangement chemistry JF - Angewandte Chemie International Edition N2 - A one-pot synthesis of a CAAC-stabilized, unsymmetrical, cyclic diborene was achieved via consecutive two-electron reduction steps from an adduct of CAAC and B\(_2\)Br\(_4\)(SMe\(_2\))\(_2\). Theoretical studies revealed that this diborene has a considerably smaller HOMO–LUMO gap than those of reported NHC- and phosphine-supported diborenes. Complexation of the diborene with [AuCl(PCy\(_3\))] afforded two diborene–Au\(^I\) π complexes, while reaction with DurBH\(_2\), P\(_4\) and a terminal acetylene led to the cleavage of B−H, P−P, and C−C π bonds, respectively. Thermal rearrangement of the diborene gave an electron-rich cyclic alkylideneborane, which readily coordinated to Ag\(^I\) via its B=C double bond. KW - inorganic chemistry KW - thermal rearrangement KW - alkylideneborane KW - carbene KW - diborene Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256576 VL - 61 IS - 3 ER - TY - JOUR A1 - Böhnke, Julian A1 - Dellermann, Theresa A1 - Celik, Mehmet Ali A1 - Krummenacher, Ivo A1 - Dewhurst, Rian D. A1 - Demeshko, Serhiy A1 - Ewing, William C. A1 - Hammond, Kai A1 - Heß, Merlin A1 - Bill, Eckhard A1 - Welz, Eileen A1 - Röhr, Merle I. S. A1 - Mitric, Roland A1 - Engels, Bernd A1 - Meyer, Franc A1 - Braunschweig, Holger T1 - Isolation of diborenes and their 90°-twisted diradical congeners JF - Nature Communications N2 - Molecules containing multiple bonds between atoms—most often in the form of olefins—are ubiquitous in nature, commerce, and science, and as such have a huge impact on everyday life. Given their prominence, over the last few decades, frequent attempts have been made to perturb the structure and reactivity of multiply-bound species through bending and twisting. However, only modest success has been achieved in the quest to completely twist double bonds in order to homolytically cleave the associated π bond. Here, we present the isolation of double-bond-containing species based on boron, as well as their fully twisted diradical congeners, by the incorporation of attached groups with different electronic properties. The compounds comprise a structurally authenticated set of diamagnetic multiply-bound and diradical singly-bound congeners of the same class of compound. KW - chemical bonding KW - diradicals KW - organometallic chemistry KW - diborenes KW - carbenes KW - boron Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-160431 VL - 9 IS - Article number: 1197 ER - TY - JOUR A1 - Arrowsmith, Merle A1 - Böhnke, Julian A1 - Braunschweig, Holger A1 - Celik, Mehmet A1 - Dellermann, Theresa A1 - Hammond, Kai T1 - Uncatalyzed Hydrogenation of First-Row Main Group Multiple Bonds JF - Chemistry, A European Journal N2 - Room temperature hydrogenation of an SIDep-stabilized diboryne (SIDep = 1,3-bis(diethylphenyl)-4,5-dihydroimidazol-2-ylidene) and a CAAC-supported diboracumulene (CAAC = 1-(2,6- diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) provided the first selective route to the corresponding 1,2-dihydrodiborenes. DFT calculations showed an overall exothermic (ΔG = 19.4 kcal mol\(^{-1}\) two-step asynchronous H\(_2\) addition mechanism proceeding via a bridging hydride. KW - diborenes KW - carbenes KW - hydrogenation KW - main-group chemistry KW - reaction mechanism KW - Diborane Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139364 N1 - This is the peer reviewed version of the following article: Chemistry, A European Journal, 2016, 22, 17169–17172, which has been published in final form at 10.1002/chem.201604094. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. VL - 22 IS - 48 SP - 17169 EP - 17172 ER -