TY - JOUR A1 - Herrmann, Marietta A1 - Engelke, Klaus A1 - Ebert, Regina A1 - Müller-Deubert, Sigrid A1 - Rudert, Maximilian A1 - Ziouti, Fani A1 - Jundt, Franziska A1 - Felsenberg, Dieter A1 - Jakob, Franz T1 - Interactions between muscle and bone — Where physics meets biology JF - Biomolecules N2 - Muscle and bone interact via physical forces and secreted osteokines and myokines. Physical forces are generated through gravity, locomotion, exercise, and external devices. Cells sense mechanical strain via adhesion molecules and translate it into biochemical responses, modulating the basic mechanisms of cellular biology such as lineage commitment, tissue formation, and maturation. This may result in the initiation of bone formation, muscle hypertrophy, and the enhanced production of extracellular matrix constituents, adhesion molecules, and cytoskeletal elements. Bone and muscle mass, resistance to strain, and the stiffness of matrix, cells, and tissues are enhanced, influencing fracture resistance and muscle power. This propagates a dynamic and continuous reciprocity of physicochemical interaction. Secreted growth and differentiation factors are important effectors of mutual interaction. The acute effects of exercise induce the secretion of exosomes with cargo molecules that are capable of mediating the endocrine effects between muscle, bone, and the organism. Long-term changes induce adaptations of the respective tissue secretome that maintain adequate homeostatic conditions. Lessons from unloading, microgravity, and disuse teach us that gratuitous tissue is removed or reorganized while immobility and inflammation trigger muscle and bone marrow fatty infiltration and propagate degenerative diseases such as sarcopenia and osteoporosis. Ongoing research will certainly find new therapeutic targets for prevention and treatment. KW - muscle KW - bone KW - mechanosensing KW - mechanotransduction KW - myokines KW - osteokines adaptation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203399 SN - 2218-273X VL - 10 IS - 3 ER - TY - JOUR A1 - Ziouti, Fani A1 - Rummler, Maximilian A1 - Steyn, Beatrice A1 - Thiele, Tobias A1 - Seliger, Anne A1 - Duda, Georg N. A1 - Bogen, Bjarne A1 - Willie, Bettina M. A1 - Jundt, Franziska T1 - Prevention of bone destruction by mechanical loading is not enhanced by the Bruton's tyrosine kinase inhibitor CC-292 in myeloma bone disease JF - International Journal of Molecular Sciences N2 - Limiting bone resorption and regenerating bone tissue are treatment goals in myeloma bone disease (MMBD). Physical stimuli such as mechanical loading prevent bone destruction and enhance bone mass in the MOPC315.BM.Luc model of MMBD. It is unknown whether treatment with the Bruton's tyrosine kinase inhibitor CC-292 (spebrutinib), which regulates osteoclast differentiation and function, augments the anabolic effect of mechanical loading. CC-292 was administered alone and in combination with axial compressive tibial loading in the MOPC315.BM.Luc model for three weeks. However, neither CC-292 alone nor its use in combination with mechanical loading was more effective in reducing osteolytic bone disease or rescuing bone mass than mechanical stimuli alone, as evidenced by microcomputed tomography (microCT) and histomorphometric analysis. Further studies are needed to investigate novel anti-myeloma and anti-resorptive strategies in combination with physical stimuli to improve treatment of MMBD. KW - multiple myeloma KW - cancer-induced bone disease KW - Bruton's tyrosine kinase inhibitor CC-292 KW - skeletal mechanobiology KW - bone adaptation KW - mechanical loading Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284943 SN - 1422-0067 VL - 22 IS - 8 ER -