TY - JOUR A1 - Selcho, Mareike A1 - Millán, Carola A1 - Palacios-Muñoz, Angelina A1 - Ruf, Franziska A1 - Ubillo, Lilian A1 - Chen, Jiangtian A1 - Bergmann, Gregor A1 - Ito, Chihiro A1 - Silva, Valeria A1 - Wegener, Christian A1 - Ewer, John T1 - Central and peripheral clocks are coupled by a neuropeptide pathway in Drosophila JF - Nature Communications N2 - Animal circadian clocks consist of central and peripheral pacemakers, which are coordinated to produce daily rhythms in physiology and behaviour. Despite its importance for optimal performance and health, the mechanism of clock coordination is poorly understood. Here we dissect the pathway through which the circadian clock of Drosophila imposes daily rhythmicity to the pattern of adult emergence. Rhythmicity depends on the coupling between the brain clock and a peripheral clock in the prothoracic gland (PG), which produces the steroid hormone, ecdysone. Time information from the central clock is transmitted via the neuropeptide, sNPF, to non-clock neurons that produce the neuropeptide, PTTH. These secretory neurons then forward time information to the PG clock. We also show that the central clock exerts a dominant role on the peripheral clock. This use of two coupled clocks could serve as a paradigm to understand how daily steroid hormone rhythms are generated in animals. KW - circadian clock KW - Drosophila KW - neuropeptide pathway KW - peripheral clocks KW - central clocks Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170831 VL - 8 IS - 15563 ER - TY - JOUR A1 - Chen, Yi-chun A1 - Mishra, Dushyant A1 - Gläß, Sebastian A1 - Gerber, Bertram T1 - Behavioral Evidence for Enhanced Processing of the Minor Component of Binary Odor Mixtures in Larval Drosophila JF - Frontiers in Psychology N2 - A fundamental problem in deciding between mutually exclusive options is that the decision needs to be categorical although the properties of the options often differ but in grade. We developed an experimental handle to study this aspect of behavior organization. Larval Drosophila were trained such that in one set of animals odor A was rewarded, but odor B was not (A+/B), whereas a second set of animals was trained reciprocally (A/B+). We then measured the preference of the larvae either for A, or for B, or for “morphed” mixtures of A and B, that is for mixtures differing in the ratio of the two components. As expected, the larvae showed higher preference when only the previously rewarded odor was presented than when only the previously unrewarded odor was presented. For mixtures of A and B that differed in the ratio of the two components, the major component dominated preference behavior—but it dominated less than expected from a linear relationship between mixture ratio and preference behavior. This suggests that a minor component can have an enhanced impact in a mixture, relative to such a linear expectation. The current paradigm may prove useful in understanding how nervous systems generate discrete outputs in the face of inputs that differ only gradually. KW - learning KW - memory KW - perception KW - compound conditioning KW - decision-making KW - Drosophila Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170011 VL - 8 IS - 1923 ER -