TY - THES A1 - Jurak, Igor T1 - The molecular mechanism of the Cytomegalovirus species specificity T1 - Molekulare Mechanismen der Cytomegaloviren Arten Spezifizierung N2 - Viruses have undergone a coevolution with their hosts, resulting in a specific adaptation to them. Consequently, many viruses have a limited host range. Occasionally, viruses acquire an adaptive mutation, which allows infection and replication in a different species as shown recently for the human immunodeficiency virus and influenza virus. Cross-species infections are responsible for the majority of emerging and re-emerging viral diseases. However, little is known about the mechanisms that restrict viruses to a certain host species, and the factors viruses need to cross the species barrier and replicate in a different host. Cytomegaloviruses are prototypes of the beta-herpesvirus subfamily and are highly species specific. They replicate only in cells of their own or a closely related species. The molecular mechanism underlying their species specificity is poorly understood and was investigated in this study. An initial observation showed that murine cytomegalovirus (MCMV) can replicate in human 293 and 911 cells, but not in any other human cells tested. Both cell lines are transformed with adenoviral E1 genes that encode a transcriptional transactivator (E1A) and two suppressors of apoptosis (E1B-55k and E1B-19k). This has led to the hypothesis that these functions are required for MCMV replication in human cells. Further analysis revealed that normal human cells died rapidly after infection of caspase-9-mediated apoptosis. Apoptosis induced by MCMV can be suppressed by broad-spectrum caspase inhibitors, and virus replication can be rescued, indicating a major role of caspases in this process. Furthermore, over-expression of a mitochondria-localized inhibitor of apoptosis, a Bcl-2-like protein, prevented apoptosis induced by this virus. Human cells resistant to apoptosis allowed also an efficient MCMV replication. The important role of Bcl-2-like proteins for cytomegalovirus cross-species infections was subsequently confirmed by inserting the corresponding genes, and other inhibitors of apoptosis and control genes into the MCMV genome. Only recombinant viruses expressing a Bcl-2-like protein were able to replicate in human cells. A single gene of human cytomegalovirus encoding a mitochondrial inhibitor of apoptosis was sufficient to allow MCMV replication in human cells. Moreover, the same principle facilitated replication of the rat cytomegalovirus in human cells. Thus, induction of apoptosis limits rodent cytomegalovirus cross-species infection. N2 - Viren durchliefen eine gemeinsame Evolution mit ihren Wirtsorganismen, die zu einer spezifischen Anpassung der Viren an ihren jeweiligen Wirt führte. Als Folge dessen verfügen viele Viren über ein eng begrenztes Wirtsspektrum. Gelegentlich machen Viren Veränderungen durch, die es ihnen erlauben, einen neuen Wirt zu infizieren und in ihm zu replizieren, wie dies in jüngster Vergangenheit beim humanen Immundefizienz-Virus oder beim Grippevirus geschehen ist. Spezies-übergreifende Infektionen sind für die meisten neuen und wiederauftauchenden Viruserkrankungen verantwortlich. Allerdings ist bisher wenig über die Mechanismen bekannt, die Viren auf einen bestimmten Wirt beschränken, und welche Faktoren Viren zur Überwindung der Spezies-Barriere und zur Vermehrung in einer neuen Wirtsspezies benötigen. Cytomegaloviren sind Prototypen der beta-Herpesvirus Unterfamilie und verfügen über eine ausgeprägte Spezies-Spezifität. Sie vermehren sich nur in Zellen der eigenen oder einer eng verwandten Wirtsspezies. Der molekulare Mechanismus, der dieser Spezies-Spezifität zugrunde liegt, ist noch weitgehend unbekannt und stellt deshalb das Thema dieser Arbeit dar. Initiale Beobachtungen zeigten, dass sich das Maus-Cytomegalovirus (MCMV) ausschließlich in menschlichen 293 und 911 Zellen, aber keiner anderen getesteten menschlichen Zelle vermehren ließ. Diese beiden Zelllinien sind mit Adenovirus E1-Genen transformiert, die den Transkriptions-Transaktivator E1A sowie zwei Apoptose-Inhibitoren (E1B-55k und E1B-19k) kodieren. Daher lag die Hypothese nahe, dass diese Funktionen benötigt werden, um eine MCMV-Replikation in menschlichen Zellen zu ermöglichen. Außerdem konnte gezeigt werden, dass normale menschliche Zellen nach Infektion rapide absterben, und zwar durch eine Caspase-9-vermittelte Apoptose. Die Induktion der Apoptose durch MCMV lässt sich durch Caspase-Inhibitoren unterdrücken, wodurch die virale Replikation wiederhergestellt wird. Dies deutet auf eine Schlüsselfunktion der Caspasen für diesen Prozess hin. Durch Überexpression eines mitochondrialen Apoptose-Inhibitors, d.h. eines Bcl-2-ähnlichen Proteins, in menschlichen Zellen ließ sich die Virus-induzierte Apoptose verhindern. Diese Zellen erlaubten ebenfalls eine effiziente MCMV-Replikation. Die Bedeutung Bcl-2-ähnlicher Proteine für die Spezies-übergreifende Cytomegalovirus-Infektion wurde sowohl durch die Integration korrespondierender Gene, alsauch durch die Integration anderer Inhibitioren der Apoptose oder von Kontroll-Genen in das MCMV Genom bestätigt. Nur rekombinante Viren, die ein Bcl-2-ähnliches Protein kodieren, konnten in menschlichen Zellen vermehrt werden. Ein einziges Gen des humanen Cytomegalovirus, das einen mitochondrialen Apoptose-Inhibitor kodiert, reichte aus, um eine MCMV-Replikation in menschlichen Zellen zu ermöglichen. Zusätzlich konnte gezeigt werden, dass dieselben Prinzipien für eine Replikation des Ratten-Cytomegalovirus in menschlichen Zellen gelten. Zusammenfassend kann festgestellt werden, dass die Induktion der Apoptose eine Spezies-übergreifende Infektion bei den Nagetier-Cytomegaloviren einschränkt. KW - Cytomegalie-Virus KW - Art KW - Spezifität KW - Molekularbiologie KW - cytomegaloviren KW - Bcl-2 KW - apoptose KW - cytomegalovirus KW - Bcl-2 KW - apoptosis KW - species specificity Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19233 ER - TY - THES A1 - Porsch, Matthias T1 - OMB and ORG-1 T1 - OMB und ORG-1 N2 - Members of the T-box gene family encode transcription factors that play key roles during embryonic development and organogenesis of invertebrates and vertebrates. The defining feature of T-box proteins is an about 200 aa large, conserved DNA binding motif, the T domain. Their importance for proper development is highlighted by the dramatic phenotypes of T-box mutant animals. My thesis was mainly focused on two Drosophila T-box genes, optomotor-blind (omb) and optomotor-blind related 1 (org-1), and included (i) a genetic analysis of org-1 and (ii) the identification of molecular determinants within OMB and ORG-1 that confer functional specificity. (i) Genetic analysis of org-1 initially based on a behavioral Drosophila mutant, C31. C31 is a X-linked, recessive mutant and was mapped to 7E-F, the cytological region of org-1. This pleiotropic mutant is manifested in walking defects, structural aberrations in the central brain, and "held-out" wings. Molecular analysis revealed that C31 contains an insertion of a 5' truncated I retrotransposon within the 3' untranslated transcript of org-1, suggesting that C31 might represent the first org-1 mutant. Based on this hypothesis, we screened 44.500 F1 female offspring of EMS mutagenized males and C31 females for the "held-out" phenotype, but failed to isolate any C31 or org-1 mutant, although this mutagenesis was functional per se. Since we could not exclude the possibility that our failure is due to an idiosyncracy of C31, we intended not to rely on C31 in further genetic experiments and followed a reverse genetic strategy . All P element lines cytologically mapping to 7E-7F were characterized for their precise insertion sites. 13 of the 19 analyzed lines had P element insertions within a hot-spot 37 kb downstream of org-1. No P element insertions within org-1 could be identified, but several P element insertions were determined on either side of org-1. The org-1 nearest insertions were used for local-hop experiments, in which we associated 6 new genes with P insertions, but failed to target org-1. The closest P elements are still 10 kb away from org-1. Subsequently, we employed org-1 flanking P elements to induce precise deletions in 7E-F spanning org-1. Two org-1 flanking P elements were brought together on a recombinant chromosome. Remobilization of P elements in cis configuration frequently results in deletions with the P element insertion sites as deficiency endpoints. In a first attempt, we expected to identify deficiencies by screening for C31 alleles. 8 new C31 alleles could be isolated. The new C31 chromosomes, however, did not carry the desired deletion. Molecular analysis indicated that C31 is not caused by aberrations in org-1, but by mutations in a distal locus. We repeated the P element remobilization and screened for the absence of P element markers. 4 lethal chromosomes could be isolated with a deletion of the org-1 locus. (ii) The consequences of ectopic org-1 were analyzed using UAS-org-1 transgenic flies and a number of different Gal4 driver lines. Misexpression of org-1 during imaginal development interfered with the normal development of many organs and resulted in flies with a plethora of phenotypes. These include a homeotic transformation of distal antenna (flagellum) into distal leg structures, a strong size reduction of the legs along their proximo-distal axis, and stunted wings. Like ectopic org-1, ectopic omb leads to dramatic changes of normal developmental pathways in Drosophila as well. dpp-Gal4/ UAS-omb flies are late pupal lethal and show an ectopic pair of wings and largely reduced eyes. GMR-Gal4 driven ectopic omb expression in the developing eye causes a degeneration of the photoreceptor cells, while GMR-Gal4/ UAS-org-1 flies have intact eyes. Hence, ectopic org-1 and omb induce profound phenotypes that are qualitatively different for these homologous genes. To begin to address the question where within OMB and ORG-1 the specificity determinants reside, we conceptionally subdivided both proteins into three domains and tested the relevance ofthese domains for functional specificity in vivo. The single domains were cloned and used as modules to assemble all possible omb-org-1 chimeric trans- genes. A method was developed to determine the relative expression strength of different UAS-transgenes, allowing to compare the various transgenic constructs for qualitative differences only, excluding different transgene quantities. Analysis of chimeric omb-org-1 transgenes with the GMR-Gal4 driver revealed that all three OMB domains contribute to functional specificity. N2 - Die Mitglieder der T-box Genfamilie kodieren Transkriptionsfaktoren mit Schlüsselrollen in der Embryogenese und der Organentwicklung von Invertebraten und Vertebraten. Charakteristisch für T-box Proteine ist der Besitz einer T Domäne, eines ungefähr 200 Aminosäuren großen, homologen DNA Bindungsmotivs. Die Relevanz dieser Proteine in vielen Entwicklungsprozessen zeigt sich deutlich in den dramatischen Phänotypen von Tieren mit Mutationen in T-box Genen. Die vorliegende Arbeit konzentrierte sich vor allem auf das Studium von zwei Drosophila T-box Genen, optomotor-blind (omb) und optomotor-blind related 1 (org-1) und beinhaltet (i) eine genetische Analyse der org-1 Gens und (ii) die Identifikation der molekularen Determinanten innerhalb OMB und ORG-1, die den verwandten Proteinen ihre funktionelle Spezifität verleihen. (i) Die genetische Analyse des org-1 Gens stützte sich anfänglich auf die Drosophila Mutante C31. C31 ist eine X-gekoppelte, rezessive Mutation und wurde in den Bereich 7E-7F kartiert, in dem sich auch org-1 befindet. C31 Fliegen zeigen Defekte im Laufverhalten, Strukturdefekte im Zentralkomplex des Gehirns und eine Flügelfehlstellung. Eine Molekularanalyse ergab, daß C31 eine Insertion eines 5' verkürzten I Retrotransposons innerhalb des 3' untranslatierten org-1 Transkripts enthält und ließ vermuten, daß C31 das erste mutante org-1 Allel darstellen könnte. Dieser Hypothese folgend durchsuchten wir ca 44.500 F1 Weibchen aus der Kreuzung von EMS mutagenisierten Männchen mit C31 Weibchen auf den C31 Flügelphänotyp, konnten allerdings keine org-1 oder C31 Mutante isolieren. Da wir nicht ausschließen konnten, daß unser Scheitern durch eine Eigentümlichkeit der C31 Mutante verursacht wurde, verfolgten wir nun eine revers-genetische Strategie mit dem Ziel, P Element Insertionen im org-1 Gen zu isolieren. Alle Fliegenlinien mit P Elementen in 7E-7F wurden molekular charakterisiert und ihre Integrationsstellen präzise bestimmt. 13 der 19 analysierten Linien trugen ihre Insertionen in einem hot-spot ungefähr 37 kb distal zu org-1. Keine P Element Insertion konnte im org-1 Gens gefunden werden, jedoch wurden mehrere P Elemente auf beiden Seiten von org-1 identifiziert. Die beiden org-1 nächsten Insertionen wurden für mehrere local-hop Experimente verwendet, in denen wir 6 neue Gene mit P Insertionen assoziieren konnten, jedoch nicht org-1. Nachfolgend wurden zwei org-1 flankierende P Elemente verwendet, um präzise Deletionen über den org-1 Genlokus zu erzeugen. Zwei org-1 flankierende P Elemente wurden zunächst auf ein Chromosom rekombiniert. Die Remobilisierung von P Elementen in cis Anordnung führt häufig zu Deletionen mit den P Element Insertionsstellen als Defizienz-Endpunkten. In einem ersten Versuch erwarteten wir mutmaßliche Defizienzen als neue C31 Allele zu identifizieren. Acht C31 Allele konnten isoliert werden. Zu unserer Überraschung trugen diese neuen C31 Chromosomen aber nicht die gewünschte Deletion. Weitere Analysen ergaben, daß C31 nicht durch Mutationen im org-1 Gen verursacht wird, sondern durch Mutationen in einem distalen Gen. Wir wiederholten die P Element Remobilisierung, suchten nun aber auf Verlust der P Element-Marker nach Defizienzen. Vier lethale Chromosomen konnten isoliert werden, die eine Deletion über org-1 tragen. (ii) Die Konsequenzen einer ektopischen Expression von org-1 wurden mit Hilfe von UAS-org-1 transgenen Fliegen und einer Reihe Gal4 Treiberlinien studiert. Mißexpression von org-1 während der Imaginalentwicklung stört die normale Entwicklung in vielen Organen und führt zu Fliegen mit einer Vielzahl von Phänotypen. Diese beinhalten eine homeotische Transformation distaler Antennensegmente in distale Beinstrukturen, stark verkürzte Beine und verkrüppelte Flügel. Ebenso wie ektopische org-1 Expression bewirkt auch die ektopische Expression von omb eine dramatische Veränderung des normalen Entwicklungsprogramms. dpp-Gal4/ UAS-omb Fliegen sind puppal lethal und weisen ein ektopisches Flügelpaar und verkleinerte Augen auf. GMR-Gal4 getriebene ektopische omb Expression in der Augenentwicklung verursacht eine Degeneration der Photorezeptorzellen, während GMR-Gal4/ UAS-org-1 Tiere intakte Augen besitzen. Die ektopische Expression von omb und org-1 verursacht also jeweils deutliche, jedoch qualitativ sehr unterschiedliche Phänotypen für die homologen Gene. Um zu bestimmen, wo sich innerhalb der OMB und ORG-1 Proteine die Spezifitätsdeterminanten befinden, haben wir beide Proteine konzeptionell in drei Domänen unterteilt und die Bedeutung der einzelnen Domänen für funktionelle Spezifität mit Hilfe von chimären omb-org-1 Transgenen in vivo untersucht. Die Analyse der chimären omb-org-1 Transgene mit der GMR-Gal4 Treiberlinie ergab, daß alle drei OMB Domänen zur funktionellen Spezifität von OMB beitragen. KW - Taufliege KW - Transkriptionsfaktor KW - Embryonalentwicklung KW - Drosophila KW - Transkriptionsfaktor KW - chimär KW - Spezifität KW - Beinentwicklung KW - Drosophila KW - transcription factor KW - chimeric KW - specificity KW - appendage development Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-3614 ER -