TY - THES A1 - Väth, Stefan Kilian T1 - On the Role of Spin States in Organic Semiconductor Devices T1 - Die Rolle von Spin Zuständen in organischen Halbleiterbauteilen N2 - The present work addressed the influence of spins on fundamental processes in organic semiconductors. In most cases, the role of spins in the conversion of sun light into electricity was of particular interest. However, also the reversed process, an electric current creating luminescence, was investigated by means of spin sensitive measurements. In this work, many material systems were probed with a variety of innovative detection techniques based on electron paramagnetic resonance spectroscopy. More precisely, the observable could be customized which resulted in the experimental techniques photoluminescence detected magnetic resonance (PLDMR), electrically detected magnetic resonance (EDMR), and electroluminescence detected magnetic resonance (ELDMR). Besides the commonly used continuous wave EPR spectroscopy, this selection of measurement methods yielded an access to almost all intermediate steps occurring in organic semiconductors during the conversion of light into electricity and vice versa. Special attention was paid to the fact that all results were applicable to realistic working conditions of the investigated devices, i.e. room temperature application and realistic illumination conditions. N2 - Die vorliegende Arbeit behandelt den Einfluss der Elektronenspins auf grundlegende Prozesse in organischen Halbleitern. In den meisten Fällen wurde der Spineinfluss während der Umwandlung von Sonnenlicht in Elektrizität untersucht. Zusätzlich wurde in einer Studie der gegenteilige Prozess behandelt. Dabei wurde der Einfluss der Spins auf die Umwandlung von elektrischem Strom in Licht betrachtet. Es wurden viele verschiedene Materialsysteme verwendet, die mit einer Vielzahl an Methoden vermessen wurden, welche alle auf dem Prinzip der Elektronenspinresonanz beruhen. Dabei wurde stets die Messgröße variiert, was zu den verwendeten Messmethoden Photolumineszenz detektierte Magnetresonanz (PLDMR), elektrisch detektierte Magnetresonanz (EDMR) und Elektrolumineszenz detektierte Magnetresonanz (ELDMR) geführt hat. Zusam- men mit der gewöhnlichen Elektronenspinresonanz Spektroskopie führt diese Auswahl an vielfältigen Messmethoden dazu, dass so gut wie alle Zwischenschritte bei der Umwand- lung von Licht in Elektrizität als auch von Elektrizität in Licht untersucht werden können. Besonderes Augenmerk wurde darauf gelegt, dass alle Messungen auf realistische Bedingungen übertragbar sind, d.h. bei Raumtemperatur und unter normalen Beleuchtungsstärken und -wellenlängen. Zu Beginn der Arbeit wurde ein kurzer Überblick über die historische Entwicklung von organischen Solarzellen gegeben, zusammen mit der Erläuterung von grundlegenden Prozessen in den untersuchten Bauteilen, stets auch hinsichtlich der vorkommenden Spinzustände. Desweiteren wurde die Solarzellencharakterisierung und die Morphologie der aktiven Schicht diskutiert. Das darauf folgende Kapitel behandelte die theoretische Beschreibung des Magnetfeldeffekts auf Spinzustände und diverse Wechselwirkungsmechanismen. Darüber hinaus wurde diskutiert, wie Mikrowellen die vom Magnetfeld ausgerichteten Spins beeinflussen können. Zu guter Letzt wurden verschiedene Modelle vorgestellt, mit deren Hilfe sich die erzielten Ergebnisse interpretieren lassen. Das nächste Kapitel beschreibt schließlich detailliert die experimentellen Feinheiten, wie verwendete Materialien, Probenherstellung und verschiedene Spektrometer Konfigurationen. Das erste Ergebnis Kapitel beschreibt den Einfluss des Zusatzmittels 1,8-Dijodoktan auf das Materialsystem PTB7:PC70BM. Dies wurde mit Hilfe von konventioneller Elek- tronenspinresonanz untersucht, welche es ermöglicht zwischen Elektronen auf dem Akzeptor- und Polaronen auf dem Donormaterial zu unterscheiden. Ergänzend dazu wurden Röntgenphotoelektronenspektroskopiemessungen durchgeführt, welche zu dem Ergebnis führten, dass Jod trotz Hochvakuumtrocknung mit der relativen hohen Konzentration von (7.3±2.1)·1019 1 in dem Material verbleibt. Zudem bleibt Jod wahrscheinlich bevorzugt in der Akzeptorphase. Es wurde außerdem kein elektronischer Doping- effekt gefunden. Nichtsdestotrotz wird dieses Ergebnis einen Einfluss auf die zukünftige Wahl des Zusatzmittels haben. Kapitel 6 handelt von der Entstehung von Triplett Exzitonen in dem Materialsystem p-DTS(FBTTh2)2:PC70BM, wobei das Donormaterial aus löslichen kleinen Molekülen besteht, anstatt aus Polymeren. Mit Hilfe von PLDMR Messungen konnten die Entstehungsmechanismen Elektronenrücktransfer, sowie inter system crossing den verschiedenen Proben zugeordnet werden. Der genaue Mechanismus hängt jedoch stark von der Morphologie des untersuchten Materialsystems ab. Durch den Nachweis von Triplett Exzitonen bei Raumtemperatur konnte die Relevanz der Ergebnisse auch bei realen Bedingungen bestätigt werden. Vergleicht man das Triplett Vorkommen mit den So- larzelleneffizienzen konnte keine Korrelation erkannt werden. Daraus ergibt sich, dass Triplett Exzitonen für das untersuchte Materialsystem keine Effizienz limitierende Größe darstellen. Zum Abschluss wurde die Ausrichtung der Moleküle auf dem Substrat mit Hilfe von winkelabhängigen Messungen bestätigt. Der Einfluss des Zusatzmittels Galvinoxyl auf die Funktionsweise von organischen Solarzellen wird in Kapitel 7 untersucht. Es wurden PLDMR durchgeführt, die gezeigt haben, dass Galvinoxyl in der Lage ist Spin Zustände zu verändern, wie von der Literatur vorhergesagt. Aufgrund dessen handelt es sich um einen konkurrierenden Prozess gegenüber den erzeugten Spin resonanten Bedingungen. Durch die Messung an verschiedenen Doping Konzentrationen konnte ein Optimum von 3.2 % für das Materialsystem P3HT:PC60BM bestimmt werden. Trotzallem ist es unwahrscheinlich, dass der sehr große Anstieg des Photostroms in mit Galvinoxyl gedopten Solarzellen auf spinabhängige Prozesse zurückzuführen ist. Die Quantifizierung von spinabhängigen Prozessen in organischen Solarzellen bein- haltet viele Schwierigkeiten. Durch die Kombination des EDMR Messprinzips mit der Ladungsträgerextraktionsmethode OTRACE war es jedoch möglich, einen spinabhängigen Rekombinationsanteil von (0.012±0.009)% bei Raumtemperatur und (0.052±0.031)% bei 200 K für das Materialsystem P3HT:PC70BM zu bestimmen. Darüber hinaus wurde eine Interpretation eingeführt, die in der Lage ist, das Zustandekommen des EDMR Signals zu erklären. Im letzten Ergebnisteil (Kapitel 9) wurde der Fokus darauf gelegt, wie Spins die Funktionsweise von organischen Leuchtdioden (OLEDs) beeinflussen, die auf thermisch aktivierter verzögerter Lumineszenz (TADF) basieren. Dabei wurden verschiedene Detektionsverfahren verwendet, wobei sich heraus gestellt hat, dass ELDMR das einzig verwendbare darstellt. Damit konnten durch temperaturabhängige Messungen der energetische Unterschied zwischen dem Singulett- und Triplett Exciplex Zustand ∆EST bestimmt werden. Es ergaben sich (20.5±1.2) meV für THCA:BPhen und (68.3±5.4) meV für m-MTDATA:BPhen. Durch diese Messungen wurde zum ersten Mal zweifelsfrei der Einfluss von Spins in der Entstehung der Elektrolumineszenz von TADF OLEDs gezeigt. Aufgrund der Diskussion von möglichen Gründen, die für die verschiedenen Werte von ∆EST verantwortlich sind, konnten neue Vorgaben für zukünftige Materialkombinationen und -synthese gefunden werden. Zusammenfassend lässt sich sagen, dass die vorliegende Arbeit einen bedeutenden Beitrag geliefert hat, um spinabhängige Prozesse in organischen Halbleitern aufzuklären. Darauf aufbauend werden Folgestudien vielleicht eines Tages sämtliche spinabhängigen Prozesse in diesen viel versprechenden Materialsystemen erklären können. KW - Organischer Halbleiter KW - Elektronenspin KW - Polymerhalbleiter KW - Organic Semiconductors KW - Electron Spin Resonance KW - Elektronenspinresonanz KW - Spin KW - Spin-eins-System Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141894 ER - TY - THES A1 - Fuchs, Moritz Jakob T1 - Spin dynamics in the central spin model: Application to graphene quantum dots T1 - Spin-Dynamik im zentralen Spin-Modell: Anwendung auf Graphen-Quantenpunkte N2 - Due to their potential application for quantum computation, quantum dots have attracted a lot of interest in recent years. In these devices single electrons can be captured, whose spin can be used to define a quantum bit (qubit). However, the information stored in these quantum bits is fragile due to the interaction of the electron spin with its environment. While many of the resulting problems have already been solved, even on the experimental side, the hyperfine interaction between the nuclear spins of the host material and the electron spin in their center remains as one of the major obstacles. As a consequence, the reduction of the number of nuclear spins is a promising way to minimize this effect. However, most quantum dots have a fixed number of nuclear spins due to the presence of group III and V elements of the periodic table in the host material. In contrast, group IV elements such as carbon allow for a variable size of the nuclear spin environment through isotopic purification. Motivated by this possibility, we theoretically investigate the physics of the central spin model in carbon based quantum dots. In particular, we focus on the consequences of a variable number of nuclear spins on the decoherence of the electron spin in graphene quantum dots. Since our models are, in many aspects, based upon actual experimental setups, we provide an overview of the most important achievements of spin qubits in quantum dots in the first part of this Thesis. To this end, we discuss the spin interactions in semiconductors on a rather general ground. Subsequently, we elaborate on their effect in GaAs and graphene, which can be considered as prototype materials. Moreover, we also explain how the central spin model can be described in terms of open and closed quantum systems and which theoretical tools are suited to analyze such models. Based on these prerequisites, we then investigate the physics of the electron spin using analytical and numerical methods. We find an intriguing thermal flip of the electron spin using standard statistical physics. Subsequently, we analyze the dynamics of the electron spin under influence of a variable number of nuclear spins. The limit of a large nuclear spin environment is investigated using the Nakajima-Zwanzig quantum master equation, which reveals a decoherence of the electron spin with a power-law decay on short timescales. Interestingly, we find a dependence of the details of this decay on the orientation of an external magnetic field with respect to the graphene plane. By restricting to a small number of nuclear spins, we are able to analyze the dynamics of the electron spin by exact diagonalization, which provides us with more insight into the microscopic details of the decoherence. In particular, we find a fast initial decay of the electron spin, which asymptotically reaches a regime governed by small fluctuations around a finite long-time average value. Finally, we analytically predict upper bounds on the size of these fluctuations in the framework of quantum thermodynamics. N2 - Auf Grund ihres Potentials hinsichtlich der Realisierung eines Quantencomputers wurde Quantenpunkten im Laufe der letzten Jahre große Aufmerksamkeit zuteil. In diesen Halbleiterstrukturen können einzelne Elektronen kontrolliert eingeschlossen werden, deren Spin wiederum als Basis eines Quantenbits zu Speicherung von Informationen verwendet werden kann. Allerdings unterliegt das Elektron vielvältigen Wechselwirkungen mit seiner Umgebung, was oftmals zu einem sehr schnellen Verlust dieser Information führt. Eine der wichtigsten Ursachen stellt dabei die Hyperfeinwechselwirkung der Kernspins der Halbleiteratome mit dem Elektronspin dar. Eine vielversprechende Möglichkeit diesen Effekt zu minimieren besteht daher in der Verringerung der Anzahl an Kernspins durch Anreicherung spinfreier Isotope. Diese Strategie kann auf Bauteile, bestehend aus Elementen der IV. Gruppe des Periodensystems wie beispielsweise Kohlenstoff, angewendet werden. Ausgehend von dieser Möglichkeit, wird in der vorliegenden Arbeit das Verhalten des Elektronspins in (kohlenstoffbasierten) Graphenquantenpunkten im Rahmen des zentralen Spinmodells analysiert. Besonderes Augenmerk wird dabei auf die Abhängigkeit der Dekohärenzphänomene von der Kernspinzahl gelegt. Da sich die Modelle, auf denen diese Untersuchung basiert, an experimentellen Gegebenheiten orientieren, wird zunächst ein überblick über die wichtigsten experimentellen Errungenschaften präsentiert. Neben einer allgemeinen Behandlung der Spinwechselwirkungen in Halbleitern wird dabei auch speziell auf die Eigenschaften von GaAs- und Graphenquantenpunkten eingegangen, die beide als Musterbeispiele angesehen werden können. Des Weiteren wird erläutert, wie sich das zentrale Spinmodell als offenes bzw. geschlossenes Quantensystem beschreiben lässt und mit welchen theoretischen Methoden sich diese untersuchen lassen. Aufbauend auf diesen Erkenntnissen, wird dann das Verhalten des Elektronspins mit Hilfe analytischer und numerischer Methoden erforscht. Im Rahmen der statistischen Physik findet sich ein thermisch induzierter Wechsel der Spinorientierung. überdies wird die Zeitentwicklung des Elektronspins für unterschiedliche Kernspinzahlen analysiert. Der Limes großer Kernspinzahlen wird mit Hilfe der Nakajima-Zwanzig Mastergleichung untersucht, wobei sich für den zeitlichen Verlauf der Dekohärenz des Elektronspins ein Potenzgesetz findet. Die Details dieses Potenzgesetzes hängen dabei von der Orientierung eines äußeren Magnetfeldes ab. Eine Beschränkung auf sehr kleine Spinsysteme ermöglicht die Anwendung von exakter Diagonalisierung, welche zusätzliche Erkenntnisse über die mikroskopischen Vorgänge, die zu Dekohärenz führen, liefert. Insbesondere ist ein schneller übergang zu einem quasi-statischen Verhalten beobachtbar, das durch kleine Fluktuationen um einen Langzeitmittelwert gekennzeichnet ist. Für diese Fluktuationen konnten im Rahmen der Quantenthermodynamik zusätzlich analytische Obergrenzen gefunden werden. KW - Elektronenspin KW - Quantenpunkt KW - Graphen KW - Quantum dot KW - Spin KW - Central spin KW - Graphene KW - Solid state physics KW - Festkörperphysik Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136079 ER - TY - THES A1 - Frey, Alexander T1 - Spin-Dependent Tunneling and Heterovalent Heterointerface Effects in Diluted Magnetic II-VI Semiconductor Heterostructures T1 - Spinabhängiges Tunneln und heterovalente Heterogrenzflächen in verdünnt magnetischen II-VI Halbleiter Heterostrukturen N2 - The contribution of the present thesis consists of three parts. They are centered around investigating certain semiconductor heterointerfaces relevant to spin injection, exploring novel, diluted magnetic single barrier tunneling structures, and further developing diluted magnetic II-VI resonant tunneling diodes. N2 - Der Beitrag der vorliegenden Arbeit besteht aus drei Teilen. Diese beschäftigen sich mit der Untersuchung bestimmter, für Spininjektion relevanter, Halbleiter Heterogrenzflächen, mit neuartigen, verdünnt magnetischen Einzelbarrieren-Tunnelstrukturen, sowie mit der Weiterentwicklung von verdünnt magnetischen Resonanz-Tunneldioden. KW - Zwei-Sechs-Halbleiter KW - Heterostruktur KW - Spintronik KW - II-VI Semiconductors KW - Diluted magnetic semiconductors KW - resonant tunneling KW - spintronics KW - heterovalent heterointerfaces KW - Spin KW - Halbleiter KW - Molekularstrahlepitaxie KW - Resonanz-Tunneleffekt KW - Tunneleffekt KW - Röntgendiffraktometrie KW - Magnetowiderstand Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78133 ER - TY - THES A1 - Edelhäuser, Lisa T1 - Model Independent Spin Determination at Hadron Colliders T1 - Modellunabhängige Spinbestimmung an Hadronbeschleunigern N2 - Mit dem Ende des Jahres 2011 haben die beiden LHC-Experimente ATLAS und CMS jeweils ungef\"ahr 5 inverse Femtobarn an Daten bei einer Energie von 7 TeV aufgenommen. Die bisher analysierten Daten geben nur sehr vage Hinweise auf neue Physik an der TeV-Skala. Trotzdem erwartet man, dass sich an dieser Skala neue Physik zeigt, die bekannte Probleme des Standardmodells behebt. In den letzten Jahrzehnten wurden viele Erweiterungen des Standardmodells der Teilchenphysik und ihre Ph\"anomenologie dazu ausgearbeitet. Sobald sich neue Physik zeigt, stellt sich die Aufgabe, ihre Beschaffenheit und das zugrunde liegende Modell zu finden. Erste Hinweise k\"onnen nat\"urlich schon das Massenspektrum und die Quantenzahlen wie z.B. die elektrische und die Farbladung der neuen Teilchen liefern. \\ In zwei sehr bekannten und gut untersuchten Modellklassen, Supersymmetrie und Extradimensionen, haben neue Teilchen allerdings sehr \"ahnliche Eigenschaften an der erreichbaren Energieskala. Beide Modelle f\"uhren Partnerteilchen zu den bekannten Standardmodell-Teilchen ein, die, abgesehen von der Masse, sehr \"ahnliche Eigenschaften besitzen. Aus diesem Grund ist es n\"otig, weitere Kriterien zu ihrer Unterscheidung einzusetzen.\\ Ein hilfreicher Unterschied ergibt sich aus der Konstruktion beider Modelle: W\"ahrend in Modellen mit Extradimensionen die Partnerteilchen gleichen Spin wie die Standardmodell-Teichen haben, ist der Spin der Partnerteilchen in supersymmetrischen Modellen um 1/2 verschieden. Dieser Unterschied hat nun interessante Auswirkungen auf die jeweilige Ph\"anomenologie der Modelle.\\ Zum Beispiel kann man ausnutzen, dass die unterschiedlichen Spins die absoluten Wirkungsquerschnitte beeinflussen. Diese Methode setzt allerdings voraus, dass man die Massen und Kopplungsst\"arken sehr genau kennt. Eine weitere Herangehensweise nutzt aus, dass Winkelverteilungen vom Spin der involvierten Teilchen abh\"angen k\"onnen. Eine wichtige darauf basierende Methode stellt einen Zusammenhang zwischen der invariante-Masse-Verteilung $d\Gamma/d\sff$ zweier Zerfallsprodukte und dem Spin des intermedi\"aren Teilchens, \"uber welches der Zerfall abl\"auft, her.\\ In dieser Arbeit untersuchen wir als erstes den Einfluss von Operatoren h\"oherer Ordnung auf die Spinbestimmung in Zerfallsketten. Wir klassifizieren als erstes die relevanten Operatoren der Dimension 5 und 6. Wir berechnen die neuen Beitr\"age und diskutieren ihre Auswirkungen auf die Bestimmung von Kopplungen und Spin in diesen Zerf\"allen.\\ Im weiteren betrachten wir zwei Szenarien, die nicht die \"ublichen Zerfallsketten beinhalten:\\ In Dreik\"orperzerf\"allen kann die oben erw\"ahnte Methode nicht angewendet werden, da das intermedi\"are Teilchen nicht auf die Massenschale gehen kann. Solche off-shell'' Zerf\"alle k\"onnen in Szenarien wie split-Supersymmetrie oder split-Universal Extra Dimensions'' wichtig sein. Man kann hier die sogenannte Narrow width approximation'' nicht anwenden, welche eine notwendige Voraussetzung f\"ur einen einfachen Zusammenhang zwischen Spin und der invariante-Masse-Verteilung ist. Wir arbeiten eine Strategie f\"ur diese Dreik\"orperzerf\"alle aus, mittels derer man zwischen den unterschiedlichen Spinszenarien unterscheiden kann. Diese Strategie beruht darauf, dass man hier die differentielle Zerfallsbreite als globalen Phasenraumfaktor mal einem Polynom in der invarianten Masse $\sff$ schreiben kann. Die hierbei auftretenden Koeffizienten sind nur Funktionen der involvierten Massen und Kopplungen, und wir zeigen, wie beispielsweise ihre Wertebereiche und Vorzeichen dazu benutzt werden k\"onnen, um den zugrunde liegenden Zerfall zu bestimmen. Am Ende testen wir diese Strategie in einer Reihe von Monte Carlo-Simulationen, und diskutieren auch den Einfluss des off-shell'' Teilchens. Im letzten Teil betrachten wir eine Topologie mit sehr kurzen Zefallsketten, in der man den oben genannten Zusammenhang zwischen Spin und invarianter Masse ebenfalls nicht anwenden kann. Wir untersuchen eine bestimmte Variable, die zur Unterscheidung von Supersymmetrie und Universal Extra Dimensions'' eingef\"uhrt wurde. Dabei nutzt man aus, dass sich das Problem im Hochenergielimes auf die zugrunde liegenden Produktionsprozesse reduziert. Wir diskutieren, wie man diese Variable auch in Szenarien anwenden kann, in denen dieser Limes keine gute N\"aherung darstellt. Dazu betrachten wir die m\"oglichen Spinszenarien mit renormierbaren Kopplungen und untersuchen im Detail, wie gut diese Variable zwischen verschiedenen Spin-, Massen- und Kopplungsszenarien unterscheiden kann. Wir finden beispielsweise, dass das Spinszenario, welches den supersymmetrischen Fall beinhaltet, von den meisten anderen Spinszenarien gut unterscheidbar ist. N2 - By the end of the year 2011, both the CMS and ATLAS experiments at the Large Hadron Collider have recorded around 5 inverse femtobarns of data at an energy of 7 TeV. There are only vague hints from the already analysed data towards new physics at the TeV scale. However, one knows that around this scale, new physics should show up so that theoretical issues of the standard model of particle physics can be cured. During the last decades, extensions to the standard model that are supposed to solve its problems have been constructed, and the corresponding phenomenology has been worked out. As soon as new physics is discovered, one has to deal with the problem of determining the nature of the underlying model. A first hint is of course given by the mass spectrum and quantum numbers such as electric and colour charges of the new particles. However, there are two popular model classes, supersymmetric models and extradimensional models, which can exhibit almost equal properties at the accessible energy range. Both introduce partners to the standard model particles with the same charges and thus one needs an extended discrimination method. From the origin of these partners arises a relevant difference: The partners constructed in extradimensional models have the same spin as their standard model partners while in Supersymmetry they differ by spin 1/2.\\ These different spins have an impact on the phenomenology of the two models. For example, one can exploit the fact that the total cross sections are affected, but this requires a very good knowledge of the couplings and masses involved. Another approach uses angular distributions depending on the particle spins. A prevailing method based on this idea uses the invariant mass distribution of the visible particles in decay chains. One can relate these distributions to the spin of the particle mediating the decay since it reflects itself in the highest power of the invariant mass $\sff$ of the adjacent particles. In this thesis we first study the influence of higher than dimension 4 operators on spin determination in such decay chains. We write down the relevant dimension 5 and 6 operators and calculate their contributions to the invariant mass distribution. We discuss how they affect the determination of spin and couplings.\\ We then address two scenarios which do not involve decay chains in the usual sense. In three body decays, the method pointed out above cannot be applied since it can only be used if the mediating particle is produced on-shell. For off-shell decays, which are important e.g. in split-Supersymmetry or split-Universal Extra Dimensions, the narrow width approximation cannot be made which previously led to the simple relation between spin and the highest power of $\sff$. We work out a strategy for these three body decays that can distinguish between the different spin scenarios. The method relies on the fact that the differential decay width $d\Gamma /d\sff$ can be rewritten in this limit as a global phase space function and a polynomial in $\sff$. The coefficients in this polynomial are functions of masses and couplings and we show that they have distinct signs or ratios depending on the spins involved in the decay. We test the strategy in a series of Monte Carlo studies and discuss the influence of the intermediate particle's mass. In the last part we consider a topology with very short decay chains. Again one cannot use the relation between spin and invariant mass. We investigate one variable that has been invented for the discrimination of Supersymmetry and Universal Extra Dimensions in the high energy limit which reduces the problem to the underlying production process. We show how this variable can also be used in new physics scenarios where the high energy limit is not a viable approximation. We include all possible spin scenarios with renormalizable interactions and study in detail the influence of the involved masses and couplings on the discrimination power of this variable. We find for example that the scenario containing the supersymmetric case is well distinguishable from most other spin scenarios. KW - Elementarteilchenphysik KW - Beyond the standard model KW - spin determination KW - Spin Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71030 ER - TY - THES A1 - König, Markus T1 - Spin-related transport phenomena in HgTe-based quantum well structures T1 - Spin-bezogene Transportphänomene in HgTe-basierten Quantentrogstrukturen N2 - Within the scope of this thesis, spin related transport phenomena have been investigated in HgTe/HgCdTe quantum well structures. This material exhibits peculiar band structure properties, which result in a strong spin-orbit interaction of the Rashba type. An inverted band structure, i.e., a reversed ordering of the energy states in comparison to common semiconductors, is obtained for quantum well layers above a critical thickness. Furthermore, the band structure properties can be controlled in the experiments by moderate gate voltages. Most prominently, the type of carriers in HgTe quantum wells can be changed from n to p due to the narrow energy gap. Along with the inverted band structure, this unique transition is the basis for the demonstration of the Quantum Spin Hall state, which is characterized by the existence of two one-dimensional spin-polarized edge states propagating in opposite directions, while the Fermi level in the bulk is in the energy gap. Since elastic scattering is suppressed by time reversal symmetry, a quantized conductance for charge and spin transport is predicted. Our experiments provide the first experimental demonstration of the QSH state. For samples with characteristic dimensions below the inelastic mean free path, charge conductance close to the expected value of 2e^2/h has been observed. Strong indication for the edge state transport was found in the experiments as well. For large samples, potential fluctuations lead to the appearance of local n-conducting regions which are considered to be the dominant source of backscattering. When time reversal symmetry is broken in a magnetic field, elastic scattering becomes possible and conductance is significantly suppressed. The suppression relies on a dominant orbital effect in a perpendicular field and a smaller Zeeman-like effect present for any field direction. For large perpendicular fields, a re-entrant quantum Hall state appears. This unique property is directly related to the non-trivial QSH insulator state. While clear evidence for the properties of charge transport was provided, the spin properties could not be addressed. This might be the goal of future experiments. In another set of experiments, the intrinsic spin Hall effect was studied. Its investigation was motivated by the possibility to create and to detect pure spin currents and spin accumulation. A non-local charging attributed to the SHE has been observed in a p-type H-shaped structure with large SO interaction, providing the first purely electrical demonstration of the SHE in a semiconductor system. A possibly more direct way to study the spin Hall effects opens up when the spin properties of the QSH edge states are taken into account. Then, the QSH edge states can be used either as an injector or a detector of spin polarization, depending on the actual configuration of the device. The experimental results indicate the existence of both intrinsic SHE and the inverse SHE independently of each other. If a spin-polarized current is injected from the QSH states into a region with Rashba SO interaction, the precession of the spin can been observed via the SHE. Both the spin injection and precession might be used for the realization of a spin-FET similar to the one proposed by Datta and Das. Another approach for the realization of a spin-based FET relies on a spin-interference device, in which the transmission is controlled via the Aharonov-Casher phase and the Berry phase, both due to the SO interaction. In the presented experiments, ring structures with tuneable SO coupling were studied. A complex interference pattern is observed as a function of external magnetic field and gate voltage. The dependence on the Rashba splitting is attributed to the Aharonov-Casher phase, whereas effects due to the Berry phase remain unresolved. This interpretation is confirmed by theoretical calculations, where multi-channel transport through the device has been assumed in agreement with the experimental results. Thus, our experiments provide the first direct observation of the AC effect in semiconductor structures. In conclusion, HgTe quantum well structures have proven to be an excellent template for studying spin-related transport phenomena: The QSHE relies on the peculiar band structure of the material and the existence of both the SHE and the AC effect is a consequence of the substantial spin-orbit interaction. While convincing results have been obtained for the various effects, several questions can not be fully answered yet. Some of them may be addressed by more extensive studies on devices already available. Other issues, however, ask, e.g., for further advances in sample fabrication or new approaches by different measurements techniques. Thus, future experiments may provide new, compelling insights for both the effects discussed in this thesis and, more generally, other spin-orbit related transport properties. N2 - Im Rahmen dieser Arbeit wurden spin-bezogene Transportphänomene in HgTe/HgCdTe-Quantentrogstrukturen untersucht. Dieses Materialsystem weist besondere Bandstruktureigenschaften auf, die u.a. zu einer starken Rashba-Spin-Bahn-Wechselwirkung führen. Eine invertierte Bandstruktur, d.h. eine umgekehrte Anordnung der energetischen Zustände im Vergleich zu üblichen Halbleitern, ergibt sich für Quantentrogschichten oberhalb einer kritischen Dicke. Darüber hinaus können die Bandstruktur-Eigenschaften im Experiment mittels moderater Gatespannungen kontrolliert werden. Hervorzuheben ist, dass die Art der Ladungsträger im HgTe-Quantentrog aufgrund der geringen Bandlücke von n- nach p-Typ geändert werden kann. Dieser einzigartige Übergang bildet zusammen mit der invertierten Bandstruktur die Grundlage für den Nachweis der Quanten-Spin-Hall-Zustands, bei dem sich zwei eindimensionale spinpolarisierte Randkanäle in entgegen gesetzte Richtung ausbreiten, während die Fermi-Energie im Probeninneren in der Bandlücke liegt. Da elastische Streuprozesse aufgrund der Zeitumkehr-Invarianz verboten sind, ist der Leitwert für Ladungs- und Spintransport quantisiert. Unsere Messungen liefern den ersten experimentellen Nachweis des QSH-Zustands. Für Proben mit charakteristischen Abmessungen unterhalb der inelastischen freien Weglänge wurde ein Leitwert nahe des theoretisch erwarteten Wertes von 2e^2/h beobachtet. Die Experimente lieferten außerdem deutliche Anzeichen für den Randkanaltransport. In größeren Proben verursachen Potenzialfluktuationen lokale n-leitende Bereiche, die als Hauptursache für Rückstreuung angesehen werden können. Wird die Zeitumkehr-Invarianz im Magnetfeld gebrochen, können elastische Streuprozesse auftreten und der Leitwert sinkt deutlich. Die Ursache dafür sind ein dominanter orbitaler Effekt für senkrechte Felder sowie ein schwächerer Zeeman-ähnlicher Effekt für beliebige Feldrichtungen. Bei starken senkrechten Feldern kommt es zu einem Wieder-Eintritt in den Quanten-Hall-Zustands, was direkt mit dem nicht-trivialen isolierenden Zustand des QSH-Effekts verknüpft ist. Während die Messungen einige Eigenschaften des Ladungstransports deutlich belegen, können die Spineigenschaften nicht untersucht werden. Dies kann jedoch ein Ziel zukünftiger Messungen sein. Außerdem wurde der intrinsische Spin-Hall-Effekt untersucht, um die Erzeugung von Spinungleichgewichten und reinen Spinströmen nachzuweisen. Eine nicht-lokale Spannung, die auf den SHE zurückzuführen ist, wurde in einer p-leitenden H-förmigen Struktur beobachtet und liefert somit den ersten rein elektrischen Nachweis des SHE in einem Halbleiter-System. Ein direkterer Weg zur Untersuchung von Spin-Hall-Effekten ergibt sich, wenn die Spinpolarisation der QSH-Randkanäle berücksichtigt wird. Dabei können die QSH-Kanäle - abhängig von der Probenkonfiguration - eine Spinpolarisation wahlweise injizieren oder detektieren. Die experimentellen Ergebnisse weisen unabhängig voneinander den intrinsischen SHE und den inversen SHE nach. Wenn durch die QSH-Kanäle ein spin-polarisierter Strom in ein Gebiet mit Rashba-Spin-Bahn-Wechselwirkung injiziert wird, kann die resultierende Spinpräzession mittels des SHE beobachtet werden. Sowohl die Spininjektion als auch die Präzession können zur Umsetzung eines Spin-FETs verwendet werden, wie er von Datta und Das vorgeschlagen wurde. Eine andere Herangehensweise zur Realisierung eines spin-basierten FETs beruht auf einem Spin-Interferenz-Bauteil, in dem die Transmission über Spin-Bahn-abhängige Phasen - die Aharonov-Casher-Phase und die Berry-Phase - gesteuert wird. Bei der Untersuchung von Ringstrukturen mit variabler Spin-Bahn-Wechselwirkung zeigt sich bei einer Variation des Magnetfeld und der Gate-Spannung ein komplexes Interferenzmuster. Die Abhängigkeit von der Rashba-Aufspaltung wird der Aharonov-Casher-Phase zugeschrieben, wohingegen Effekte aufgrund der Berry-Phase nicht nachgewiesen werden können. Diese Interpretation wird durch theoretische Berechnungen bestätigt, in denen Mehr-Kanal-Transport durch den Ring angenommen wurde. Somit liefern unsere Experimente den ersten direkten Nachweis des AC-Effektes in Halbleiterstrukturen. Insgesamt stellen die HgTe-Quantentröge ein als exzellentes System zur Untersuchung von spin-bezogenen Transportphänomenen dar: Der QSHE beruht auf der besonderen Bandstruktur; und sowohl der SHE als auch der AC-Effekt treten aufgrund der deutlichen Spin-Bahn-Wechselwirkung auf. Für alle Effekte wurden überzeugende Ergebnisse erzielt; allerdings konnten einige Fragen noch nicht vollständig beantwortet werden. Einige können möglicherweise mittels umfangreicherer Untersuchungen geklärt werden. Andere jedoch verlangen z.B. nach Fortschritten in der Probenherstellung oder anderen Untersuchungsmethoden. Daher können zukünftige Experimente weitere neue faszinierende Einblicke sowohl in die hier diskutierten Effekte als auch in andere Spin-Bahn-bezogene Transportphänomene bieten. KW - Spin-Bahn-Wechselwirkung KW - Quantenwell KW - Elektronischer Transport KW - Interferenz KW - Quanten-Hall-Effekt KW - Spin KW - Zwei-Sechs-Halbleiter KW - mesoskopischer Transport KW - Quanten-Spin-Hall-Effekt KW - Spin-Hall-Effekt KW - Aharonov-Casher-Effekt KW - mesoscopic transport KW - spin-orbit-interaction KW - narrow-gap semiconductor KW - quantum spin Hall effect KW - spin Hall effect KW - Aharonov-Casher phase Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-27301 ER -