TY - JOUR A1 - Graf, Jürgen A1 - Rahmati, Vahid A1 - Majoros, Myrtill A1 - Witte, Otto W. A1 - Geis, Christian A1 - Kiebel, Stefan J. A1 - Holthoff, Knut A1 - Kirmse, Knut T1 - Network instability dynamics drive a transient bursting period in the developing hippocampus in vivo JF - eLife N2 - Spontaneous correlated activity is a universal hallmark of immature neural circuits. However, the cellular dynamics and intrinsic mechanisms underlying network burstiness in the intact developing brain are largely unknown. Here, we use two-photon Ca\(^{2+}\) imaging to comprehensively map the developmental trajectories of spontaneous network activity in the hippocampal area CA1 of mice in vivo. We unexpectedly find that network burstiness peaks after the developmental emergence of effective synaptic inhibition in the second postnatal week. We demonstrate that the enhanced network burstiness reflects an increased functional coupling of individual neurons to local population activity. However, pairwise neuronal correlations are low, and network bursts (NBs) recruit CA1 pyramidal cells in a virtually random manner. Using a dynamic systems modeling approach, we reconcile these experimental findings and identify network bi-stability as a potential regime underlying network burstiness at this age. Our analyses reveal an important role of synaptic input characteristics and network instability dynamics for NB generation. Collectively, our data suggest a mechanism, whereby developing CA1 performs extensive input-discrimination learning prior to the onset of environmental exploration. KW - hippocampus KW - spontaneous network activity KW - transient bursting Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300906 VL - 11 ER - TY - JOUR A1 - Grünewald, Benedikt A1 - Lange, Maren D A1 - Werner, Christian A1 - O'Leary, Aet A1 - Weishaupt, Andreas A1 - Popp, Sandy A1 - Pearce, David A A1 - Wiendl, Heinz A1 - Reif, Andreas A1 - Pape, Hans C A1 - Toyka, Klaus V A1 - Sommer, Claudia A1 - Geis, Christian T1 - Defective synaptic transmission causes disease signs in a mouse model of juvenile neuronal ceroid lipofuscinosis JF - eLife N2 - Juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease) caused by mutations in the CLN3 gene is the most prevalent inherited neurodegenerative disease in childhood resulting in widespread central nervous system dysfunction and premature death. The consequences of CLN3 mutation on the progression of the disease, on neuronal transmission, and on central nervous network dysfunction are poorly understood. We used Cln3 knockout (Cln3\(^{Δex1-6}\)) mice and found increased anxiety-related behavior and impaired aversive learning as well as markedly affected motor function including disordered coordination. Patch-clamp and loose-patch recordings revealed severely affected inhibitory and excitatory synaptic transmission in the amygdala, hippocampus, and cerebellar networks. Changes in presynaptic release properties may result from dysfunction of CLN3 protein. Furthermore, loss of calbindin, neuropeptide Y, parvalbumin, and GAD65-positive interneurons in central networks collectively support the hypothesis that degeneration of GABAergic interneurons may be the cause of supraspinal GABAergic disinhibition. KW - CLN3 KW - mutation KW - mouse model KW - synaptic transmission KW - amygdala KW - hippocampus Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170004 VL - 6 IS - e28685 ER -