TY - JOUR A1 - Arndt, Andreas A1 - Hoffacker, Peter A1 - Zellmer, Konstantin A1 - Goecer, Oktay A1 - Recks, Mascha S. A1 - Kuerten, Stefanie T1 - Conventional Housing Conditions Attenuate the Development of Experimental Autoimmune Encephalomyelitis JF - PLoS ONE N2 - BACKGROUND: The etiology of multiple sclerosis (MS) has remained unclear, but a causative contribution of factors outside the central nervous system (CNS) is conceivable. It was recently suggested that gut bacteria trigger the activation of CNS-reactive T cells and the development of demyelinative disease. METHODS: C57BL/6 (B6) mice were kept either under specific pathogen free or conventional housing conditions, immunized with the myelin basic protein (MBP)-proteolipid protein (PLP) fusion protein MP4 and the development of EAE was clinically monitored. The germinal center size of the Peyer's patches was determined by immunohistochemistry in addition to the level of total IgG secretion which was assessed by ELISPOT. ELISPOT assays were also used to measure MP4-specific T cell and B cell responses in the Peyer's patches and the spleen. Ear swelling assays were performed to determine the extent of delayed-type hypersensitivity reactions in specific pathogen free and conventionally housed mice. RESULTS: In B6 mice that were actively immunized with MP4 and kept under conventional housing conditions clinical disease was significantly attenuated compared to specific pathogen free mice. Conventionally housed mice displayed increased levels of IgG secretion in the Peyer's patches, while the germinal center formation in the gut and the MP4-specific TH17 response in the spleen were diminished after immunization. Accordingly, these mice displayed an attenuated delayed type hypersensitivity (DTH) reaction in ear swelling assays. CONCLUSIONS: The data corroborate the notion that housing conditions play a substantial role in the induction of murine EAE and suggest that the presence of gut bacteria might be associated with a decreased immune response to antigens of lower affinity. This concept could be of importance for MS and calls for caution when considering the therapeutic approach to treat patients with antibiotics." KW - B cells KW - secretion KW - multiple sclerosis KW - enzyme-linked immunoassays KW - Peyer's patches KW - gut bacteria KW - T cells KW - immune response Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119603 VL - 9 IS - 6 ER - TY - JOUR A1 - Bail, Kathrin A1 - Notz, Quirin A1 - Rovituso, Damiano M. A1 - Schampel, Andrea A1 - Wunsch, Marie A1 - Koeniger, Tobias A1 - Schropp, Verena A1 - Bharti, Richa A1 - Scholz, Claus-Juergen A1 - Foerstner, Konrad U. A1 - Kleinschnitz, Christoph A1 - Kuerten, Stefanie T1 - Differential effects of FTY720 on the B cell compartment in a mouse model of multiple sclerosis. JF - Journal of Neuroinflammation N2 - Background: MP4-induced experimental autoimmune encephalomyelitis (EAE) is a mouse model of multiple sclerosis (MS), which enables targeted research on B cells, currently much discussed protagonists in MS pathogenesis. Here, we used this model to study the impact of the S1P1 receptor modulator FTY720 (fingolimod) on the autoreactive B cell and antibody response both in the periphery and the central nervous system (CNS). Methods: MP4-immunized mice were treated orally with FTY720 for 30 days at the peak of disease or 50 days after EAE onset. The subsequent disease course was monitored and the MP4-specific B cell/antibody response was measured by ELISPOT and ELISA. RNA sequencing was performed to determine any effects on B cell-relevant gene expression. S1P\(_{1}\) receptor expression by peripheral T and B cells, B cell subset distribution in the spleen and B cell infiltration into the CNS were studied by flow cytometry. The formation of B cell aggregates and of tertiary lymphoid organs (TLOs) was evaluated by histology and immunohistochemistry. Potential direct effects of FTY720 on B cell aggregation were studied in vitro. Results: FTY720 significantly attenuated clinical EAE when treatment was initiated at the peak of EAE. While there was a significant reduction in the number of T cells in the blood after FTY720 treatment, B cells were only slightly diminished. Yet, there was evidence for the modulation of B cell receptor-mediated signaling upon FTY720 treatment. In addition, we detected a significant increase in the percentage of B220\(^{+}\) B cells in the spleen both in acute and chronic EAE. Whereas acute treatment completely abrogated B cell aggregate formation in the CNS, the numbers of infiltrating B cells and plasma cells were comparable between vehicle- and FTY720-treated mice. In addition, there was no effect on already developed aggregates in chronic EAE. In vitro B cell aggregation assays suggested the absence of a direct effect of FTY720 on B cell aggregation. However, FTY720 impacted the evolution of B cell aggregates into TLOs. Conclusions: The data suggest differential effects of FTY720 on the B cell compartment in MP4-induced EAE. KW - B cells KW - EAE KW - FTY720 KW - fingolimod KW - multiple sclerosis KW - TLO Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157869 VL - 14 IS - 148 ER - TY - JOUR A1 - Göbel, Kerstin A1 - Pankratz, Susann A1 - Asaridou, Chloi-Magdalini A1 - Herrmann, Alexander M. A1 - Bittner, Stefan A1 - Merker, Monika A1 - Ruck, Tobias A1 - Glumm, Sarah A1 - Langhauser, Friederike A1 - Kraft, Peter A1 - Krug, Thorsten F. A1 - Breuer, Johanna A1 - Herold, Martin A1 - Gross, Catharina C. A1 - Beckmann, Denise A1 - Korb-Pap, Adelheid A1 - Schuhmann, Michael K. A1 - Kuerten, Stefanie A1 - Mitroulis, Ioannis A1 - Ruppert, Clemens A1 - Nolte, Marc W. A1 - Panousis, Con A1 - Klotz, Luisa A1 - Kehrel, Beate A1 - Korn, Thomas A1 - Langer, Harald F. A1 - Pap, Thomas A1 - Nieswandt, Bernhard A1 - Wiendl, Heinz A1 - Chavakis, Triantafyllos A1 - Kleinschnitz, Christoph A1 - Meuth, Sven G. T1 - Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells JF - Nature Communications N2 - Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. KW - blood coagulation KW - factor XII KW - neuroinflammation KW - dendric cells Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165503 VL - 7 IS - 11626 ER - TY - JOUR A1 - Hohmann, Christopher A1 - Milles, Bianca A1 - Schinke, Michael A1 - Schroeter, Michael A1 - Ulzheimer, Jochen A1 - Kraft, Peter A1 - Kleinschnitz, Christoph A1 - Lehmann, Paul V. A1 - Kuerten, Stefanie T1 - Categorization of multiple sclerosis relapse subtypes by B cell profiling in the blood JF - Acta Neuropathologica Communications N2 - INTRODUCTION: B cells are attracting increasing attention in the pathogenesis of multiple sclerosis (MS). B cell-targeted therapies with monoclonal antibodies or plasmapheresis have been shown to be successful in a subset of patients. Here, patients with either relapsing-remitting (n = 24) or secondary progressive (n = 6) MS presenting with an acute clinical relapse were screened for their B cell reactivity to brain antigens and were re-tested three to nine months later. Enzyme-linked immunospot technique (ELISPOT) was used to identify brain-reactive B cells in peripheral blood mononuclear cells (PBMC) directly ex vivo and after 96 h of polyclonal stimulation. Clinical severity of symptoms was determined using the Expanded Disability Status Scale (EDSS). RESULTS: Nine patients displayed B cells in the blood producing brain-specific antibodies directly ex vivo. Six patients were classified as B cell positive donors only after polyclonal B cell stimulation. In 15 patients a B cell response to brain antigens was absent. Based on the autoreactive B cell response we categorized MS relapses into three different patterns. Patients who displayed brain-reactive B cell responses both directly ex vivo and after polyclonal stimulation (pattern I) were significantly younger than patients in whom only memory B cell responses were detectable or entirely absent (patterns II and III; p = 0.003). In one patient a conversion to a positive B cell response as measured directly ex vivo and subsequently also after polyclonal stimulation was associated with the development of a clinical relapse. The evaluation of the predictive value of a brain antigen-specific B cell response showed that seven of eight patients (87.5%) with a pattern I response encountered a clinical relapse during the observation period of 10 months, compared to two of five patients (40%) with a pattern II and three of 14 patients (21.4%) with a pattern III response (p = 0.0005; hazard ratio 6.08 (95% confidence interval 1.87-19.77). CONCLUSIONS: Our data indicate actively ongoing B cell-mediated immunity against brain antigens in a subset of MS patients that may be causative of clinical relapses and provide new diagnostic and therapeutic options for a subset of patients. KW - ELISPOT KW - MS KW - predictive value KW - relapse KW - B cells Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120580 SN - 2051-5960 VL - 2 IS - 138 ER - TY - JOUR A1 - Hohnmann, Christopher A1 - Milles, Bianca A1 - Schinke, Michael A1 - Schroeter, Michael A1 - Ulzheimer, Jochen A1 - Kraft, Peter A1 - Kleinschnitz, Christoph A1 - Lehmann, Paul V. A1 - Kuerten, Stefanie T1 - Categorization of multiple sclerosis relapse subtypes by B cell profiling in the blood JF - Acta Neuropathologica Communications N2 - Introduction B cells are attracting increasing attention in the pathogenesis of multiple sclerosis (MS). B cell-targeted therapies with monoclonal antibodies or plasmapheresis have been shown to be successful in a subset of patients. Here, patients with either relapsing-remitting (n = 24) or secondary progressive (n = 6) MS presenting with an acute clinical relapse were screened for their B cell reactivity to brain antigens and were re-tested three to nine months later. Enzyme-linked immunospot technique (ELISPOT) was used to identify brain-reactive B cells in peripheral blood mononuclear cells (PBMC) directly ex vivo and after 96 h of polyclonal stimulation. Clinical severity of symptoms was determined using the Expanded Disability Status Scale (EDSS). Results Nine patients displayed B cells in the blood producing brain-specific antibodies directly ex vivo. Six patients were classified as B cell positive donors only after polyclonal B cell stimulation. In 15 patients a B cell response to brain antigens was absent. Based on the autoreactive B cell response we categorized MS relapses into three different patterns. Patients who displayed brain-reactive B cell responses both directly ex vivo and after polyclonal stimulation (pattern I) were significantly younger than patients in whom only memory B cell responses were detectable or entirely absent (patterns II and III; p = 0.003). In one patient a conversion to a positive B cell response as measured directly ex vivo and subsequently also after polyclonal stimulation was associated with the development of a clinical relapse. The evaluation of the predictive value of a brain antigen-specific B cell response showed that seven of eight patients (87.5%) with a pattern I response encountered a clinical relapse during the observation period of 10 months, compared to two of five patients (40%) with a pattern II and three of 14 patients (21.4%) with a pattern III response (p = 0.0005; hazard ratio 6.08 (95% confidence interval 1.87-19.77). Conclusions Our data indicate actively ongoing B cell-mediated immunity against brain antigens in a subset of MS patients that may be causative of clinical relapses and provide new diagnostic and therapeutic options for a subset of patients. KW - predictive value KW - MS KW - ELISPOT KW - B cells KW - relapse Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126124 VL - 2 IS - 138 ER - TY - JOUR A1 - Kleist, Christian A1 - Mohr, Elisabeth A1 - Gaikwad, Sadanand A1 - Dittmar, Laura A1 - Kuerten, Stefanie A1 - Platten, Michael A1 - Mier, Walter A1 - Schmitt, Michael A1 - Opelz, Gerhard A1 - Terness, Peter T1 - Autoantigen-specific immunosuppression with tolerogenic peripheral blood cells prevents relapses in a mouse model of relapsing-remitting multiple sclerosis JF - Journal of Translational Medicine N2 - Background: Dendritic cells (DCs) rendered suppressive by treatment with mitomycin C and loaded with the autoantigen myelin basic protein demonstrated earlier their ability to prevent experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis (MS). This provides an approach for prophylactic vaccination against autoimmune diseases. For clinical application such DCs are difficult to generate and autoantigens hold the risk of exacerbating the disease. Methods: We replaced DCs by peripheral mononuclear cells and myelin autoantigens by glatiramer acetate (Copaxone ®), a drug approved for the treatment of MS. Spleen cells were loaded with Copaxone®, incubated with mitomycin C (MICCop) and injected into mice after the first bout of relapsing-remitting EAE. Immunosuppression mediated by MICCop was investigated in vivo by daily assessment of clinical signs of paralysis and in in vitro restimulation assays of peripheral immune cells. Cytokine profiling was performed by enzyme-linked immunosorbent assay (ELISA). Migration of MICCop cells after injection was examined by biodistribution analysis of 111Indium-labelled MICCop. The number and inhibitory activity of CD4+CD25+FoxP3+ regulatory T cells were analysed by histology, flow cytometry and in vitro mixed lymphocyte cultures. In order to assess the specificity of MICCop-induced suppression, treated EAE mice were challenged with the control protein ovalbumin. Humoral and cellular immune responses were then determined by ELISA and in vitro antigen restimulation assay. Results: MICCop cells were able to inhibit the harmful autoreactive T-cell response and prevented mice from further relapses without affecting general immune responses. Administered MICCop migrated to various organs leading to an increased infiltration of the spleen and the central nervous system with CD4+CD25+FoxP3+ cells displaying a suppressive cytokine profile and inhibiting T-cell responses. Conclusion: We describe a clinically applicable cell therapeutic approach for controlling relapses in autoimmune encephalomyelitis by specifically silencing the deleterious autoimmune response. KW - Autoimmunity KW - Cell therapy KW - Copaxone® KW - Immune tolerance KW - Mitomycin C KW - Relapsing-remitting MS KW - Regulatory T cells Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165787 VL - 14 IS - 99 ER - TY - JOUR A1 - Koeniger, Tobias A1 - Bell, Luisa A1 - Mifka, Anika A1 - Enders, Michael A1 - Hautmann, Valentin A1 - Mekala, Subba Rao A1 - Kirchner, Philipp A1 - Ekici, Arif B. A1 - Schulz, Christian A1 - Wörsdörfer, Philipp A1 - Mencl, Stine A1 - Kleinschnitz, Christoph A1 - Ergün, Süleyman A1 - Kuerten, Stefanie T1 - Bone marrow‐derived myeloid progenitors in the leptomeninges of adult mice JF - Stem Cells N2 - Although the bone marrow contains most hematopoietic activity during adulthood, hematopoietic stem and progenitor cells can be recovered from various extramedullary sites. Cells with hematopoietic progenitor properties have even been reported in the adult brain under steady‐state conditions, but their nature and localization remain insufficiently defined. Here, we describe a heterogeneous population of myeloid progenitors in the leptomeninges of adult C57BL/6 mice. This cell pool included common myeloid, granulocyte/macrophage, and megakaryocyte/erythrocyte progenitors. Accordingly, it gave rise to all major myelo‐erythroid lineages in clonogenic culture assays. Brain‐associated progenitors persisted after tissue perfusion and were partially inaccessible to intravenous antibodies, suggesting their localization behind continuous blood vessel endothelium such as the blood‐arachnoid barrier. Flt3\(^{Cre}\) lineage tracing and bone marrow transplantation showed that the precursors were derived from adult hematopoietic stem cells and were most likely continuously replaced via cell trafficking. Importantly, their occurrence was tied to the immunologic state of the central nervous system (CNS) and was diminished in the context of neuroinflammation and ischemic stroke. Our findings confirm the presence of myeloid progenitors at the meningeal border of the brain and lay the foundation to unravel their possible functions in CNS surveillance and local immune cell production. KW - hematopoietic KW - meninges KW - mouse KW - myeloid KW - progenitor Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224452 VL - 39 IS - 2 SP - 227 EP - 239 ER - TY - JOUR A1 - Koeniger, Tobias A1 - Kuerten, Stefanie T1 - Splitting the "unsplittable": Dissecting resident and infiltrating macrophages in experimental autoimmune encephalomyelitis JF - International Journal of Molecular Sciences N2 - Macrophages predominate the inflammatory landscape within multiple sclerosis (MS) lesions, not only regarding cellularity but also with respect to the diverse functions this cell fraction provides during disease progression and remission. Researchers have been well aware of the fact that the macrophage pool during central nervous system (CNS) autoimmunity consists of a mixture of myeloid cells. Yet, separating these populations to define their unique contribution to disease pathology has long been challenging due to their similar marker expression. Sophisticated lineage tracing approaches as well as comprehensive transcriptome analysis have elevated our insight into macrophage biology to a new level enabling scientists to dissect the roles of resident (microglia and non-parenchymal macrophages) and infiltrating macrophages with unprecedented precision. To do so in an accurate way, researchers have to know their toolbox, which has been filled with diverse, discriminating approaches from decades of studying neuroinflammation in animal models. Every method has its own strengths and weaknesses, which will be addressed in this review. The focus will be on tools to manipulate and/or identify different macrophage subgroups within the injured murine CNS. KW - CNS KW - distinction KW - experimental autoimmune encephalomyelitis KW - inflammation KW - macrophages KW - markers KW - microglia KW - monocytes Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285067 SN - 1422-0067 VL - 18 IS - 10 ER - TY - JOUR A1 - Rottlaender, Andrea A1 - Kuerten, Stefanie T1 - Stepchild or prodigy? Neuroprotection in multiple sclerosis (MS) research JF - International Journal of Molecular Sciences N2 - Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system (CNS) and characterized by the infiltration of immune cells, demyelination and axonal loss. Loss of axons and nerve fiber pathology are widely accepted as correlates of neurological disability. Hence, it is surprising that the development of neuroprotective therapies has been neglected for a long time. A reason for this could be the diversity of the underlying mechanisms, complex changes in nerve fiber pathology and the absence of biomarkers and tools to quantify neuroregenerative processes. Present therapeutic strategies are aimed at modulating or suppressing the immune response, but do not primarily attenuate axonal pathology. Yet, target-oriented neuroprotective strategies are essential for the treatment of MS, especially as severe damage of nerve fibers mostly occurs in the course of disease progression and cannot be impeded by immune modulatory drugs. This review shall depict the need for neuroprotective strategies and elucidate difficulties and opportunities. KW - experimental autoimmune encephalomyelitis KW - white matter KW - lesions KW - remyelination KW - multiple sclerosis KW - regeneration KW - neuroprotection KW - degeneration KW - axonal damage KW - neurodegeneration KW - pathology KW - sodium channels KW - axonal injury KW - central nervous system Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148416 VL - 16 ER - TY - JOUR A1 - Rovituso, Damiano M. A1 - Duffy, Catharina E. A1 - Schroeter, Michael A1 - Kaiser, Claudia C. A1 - Kleinschnitz, Christoph A1 - Bayas, Antonios A1 - Elsner, Rebecca A1 - Kuerten, Stefanie T1 - The brain antigen-specific B cell response correlates with glatiramer acetate responsiveness in relapsing-remitting multiple sclerosis patients JF - Scientific Reports N2 - B cells have only recently begun to attract attention in the immunopathology of multiple sclerosis (MS). Suitable markers for the prediction of treatment success with immunomodulatory drugs are still missing. Here we evaluated the B cell response to brain antigens in n = 34 relapsing-remitting MS (RRMS) patients treated with glatiramer acetate (GA) using the enzyme-linked immunospot technique (ELISPOT). Our data demonstrate that patients can be subdivided into responders that show brain-specific B cell reactivity in the blood and patients without this reactivity. Only in patients that classified as B cell responders, there was a significant positive correlation between treatment duration and the time since last relapse in our study. This correlation was GA-specific because it was absent in a control group that consisted of interferon-\(\beta\) (IFN-\(\beta\))-treated RRMS patients (n = 23). These data suggest that GA has an effect on brain-reactive B cells in a subset of patients and that only this subset benefits from treatment. The detection of brain-reactive B cells is likely to be a suitable tool to identify drug responders. KW - cortical pathology KW - natural history KW - disability KW - expression KW - antibodies KW - disease KW - lesions KW - trial KW - multiple sclerosis Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148172 VL - 5 IS - 14265 ER -