TY - JOUR A1 - Arrowsmith, Merle A1 - Böhnke, Julian A1 - Braunschweig, Holger A1 - Celik, Mehmet A1 - Dellermann, Theresa A1 - Hammond, Kai T1 - Uncatalyzed Hydrogenation of First-Row Main Group Multiple Bonds JF - Chemistry, A European Journal N2 - Room temperature hydrogenation of an SIDep-stabilized diboryne (SIDep = 1,3-bis(diethylphenyl)-4,5-dihydroimidazol-2-ylidene) and a CAAC-supported diboracumulene (CAAC = 1-(2,6- diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) provided the first selective route to the corresponding 1,2-dihydrodiborenes. DFT calculations showed an overall exothermic (ΔG = 19.4 kcal mol\(^{-1}\) two-step asynchronous H\(_2\) addition mechanism proceeding via a bridging hydride. KW - diborenes KW - carbenes KW - hydrogenation KW - main-group chemistry KW - reaction mechanism KW - Diborane Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139364 N1 - This is the peer reviewed version of the following article: Chemistry, A European Journal, 2016, 22, 17169–17172, which has been published in final form at 10.1002/chem.201604094. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. VL - 22 IS - 48 SP - 17169 EP - 17172 ER - TY - INPR A1 - Auerhammer, Dominic A1 - Arrowsmith, Merle A1 - Bissinger, Philipp A1 - Braunschweig, Holger A1 - Dellermann, Theresa A1 - Kupfer, Thomas A1 - Lenczyk, Carsten A1 - Roy, Dipak A1 - Schäfer, Marius A1 - Schneider, Christoph T1 - Increasing the Reactivity of Diborenes: Derivatization of NHC- Supported Dithienyldiborenes with Electron-Donor Groups T2 - Chemistry, A European Journal N2 - A series of NHC-supported 1,2-dithienyldiborenes was synthesized from the corresponding (dihalo)thienylborane NHC precursors. NMR and UV-vis spectroscopic data, as well as X-ray crystallographic analyses, were used to assess the electronic and steric influences on the B=B double bond of various NHCs and electron-donating substituents on the thienyl ligands. Crystallographic data showed that the degree of coplanarity of the diborene core and thienyl groups is highly dependent on the sterics of the substituents. Furthermore, any increase in the electron- donating ability of the substituents resulted in the destabilization of the HOMO and greater instability of the resulting diborenes. KW - diborenes KW - N-heterocyclic carbenes KW - electron donors KW - structural analysis KW - spectroscopy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155419 N1 - This is the pre-peer reviewed version of the following article: Auerhammer, D., Arrowsmith, M., Bissinger, P., Braunschweig, H., Dellermann, T., Kupfer, T., Lenczyk, C., Roy, D. K., Schäfer, M. and Schneider, C. (2017), Increasing the Reactivity of Diborenes: Derivatization of NHC-Supported Dithienyldiborenes with Electron-Donor Groups. Chem. Eur. J.. doi:10.1002/chem.201704669, which has been published in final form at doi:10.1002/chem.201704669. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. ER - TY - JOUR A1 - Braunschweig, Holger A1 - Constantinidis, Philipp A1 - Dellermann, Theresa A1 - Ewing, William A1 - Fischer, Ingo A1 - Hess, Merlin A1 - Knight, Fergus A1 - Rempel, Anna A1 - Schneider, Christoph A1 - Ullrich, Stefan A1 - Vargas, Alfredo A1 - Woolins, Derek T1 - Highly Strained Heterocycles Constructed from Boron–Boron Multiple Bonds and Heavy Chalcogens JF - Angewandte Chemie, International Edition N2 - The reactions of a diborene with elemental selenium or tellurium are shown to afford a diboraselenirane or diboratellurirane, respectively. These reactions are reminiscent of the sequestration of subvalent oxygen and nitrogen in the formation of oxiranes and aziridines; however, such reactivity is not known between alkenes and the heavy chalcogens. Although carbon is too electronegative to affect the reduction of elements with lower relative electronegativity, the highly reducing nature of the B B double bond enables reactions with Se0 and Te0. The capacity of multiple bonds between boron atoms to donate electron density is highlighted in reactions where diborynes behave as nucleophiles, attacking one of the two Te atoms of diaryltellurides, forming salts consisting of diboratellurenium cations and aryltelluride anions. KW - Boron KW - Heterocycles KW - Multiple bonds KW - Selenium KW - Tellurium KW - Bor KW - Heterocyclische Verbindungen KW - Selen KW - Tellur Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138237 N1 - This is the peer reviewed version of the following article: Angew. Chem. Int. Ed. 2016, 55, 5606–5609, which has been published in final form at 10.1002/anie.201601691. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. N1 - Accepted Version VL - 55 IS - 18 SP - 5606 EP - 5609 ER - TY - JOUR A1 - Brückner, Tobias A1 - Dewhurst, Rian D. A1 - Dellermann, Theresa A1 - Müller, Marcel A1 - Braunschweig, Holger T1 - Mild synthesis of diboryldiborenes by diboration of B–B triple bonds JF - Chemical Science N2 - A set of diboryldiborenes are prepared by the mild, catalyst-free, room-temperature diboration of the B–B triple bonds of doubly base-stabilized diborynes. Two of the product diboryldiborenes are found to be air- and water-stable in the solid state, an effect that is attributed to their high crystallinity and extreme insolubility in a wide range of solvents. KW - boron KW - diborenes KW - diboration KW - triple bonds KW - diborynes Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186306 VL - 10 ER - TY - INPR A1 - Böhnke, Julian A1 - Dellermann, Theresa A1 - Celik, Mehmet Ali A1 - Krummenacher, Ivo A1 - Dewhurst, Rian D. A1 - Demeshko, Serhiy A1 - Ewing, William C. A1 - Hammond, Kai A1 - Heß, Merlin A1 - Bill, Eckhard A1 - Welz, Eileen A1 - Röhr, Merle I. S. A1 - Mitric, Roland A1 - Engels, Bernd A1 - Meyer, Franc A1 - Braunschweig, Holger T1 - Isolation of diradical products of twisted double bonds T2 - Nature Communications N2 - Molecules containing multiple bonds between atoms—most often in the form of olefins—are ubiquitous in nature, commerce, and science, and as such have a huge impact on everyday life. Given their prominence, over the last few decades, frequent attempts have been made to perturb the structure and reactivity of multiply-bound species through bending and twisting. However, only modest success has been achieved in the quest to completely twist double bonds in order to homolytically cleave the associated π bond. Here, we present the isolation of double-bond-containing species based on boron, as well as their fully twisted diradical congeners, by the incorporation of attached groups with different electronic properties. The compounds comprise a structurally authenticated set of diamagnetic multiply-bound and diradical singly-bound congeners of the same class of compound. KW - diradicals KW - diborenes KW - carbenes KW - boron Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-160248 N1 - Submitted version of Julian Böhnke, Theresa Dellermann, Mehmet Ali Celik, Ivo Krummenacher, Rian D. Dewhurst, Serhiy Demeshko, William C. Ewing, Kai Hammond, Merlin Heß, Eckhard Bill, Eileen Welz, Merle I. S. Röhr, Roland Mitrić, Bernd Engels, Franc Meyer & Holger Braunschweig: Isolation of diborenes and their 90°-twisted diradical congeners. Nature Communications. Volume 9, Article number: 1197 (2018) doi:10.1038/s41467-018-02998-3 ER - TY - JOUR A1 - Böhnke, Julian A1 - Dellermann, Theresa A1 - Celik, Mehmet Ali A1 - Krummenacher, Ivo A1 - Dewhurst, Rian D. A1 - Demeshko, Serhiy A1 - Ewing, William C. A1 - Hammond, Kai A1 - Heß, Merlin A1 - Bill, Eckhard A1 - Welz, Eileen A1 - Röhr, Merle I. S. A1 - Mitric, Roland A1 - Engels, Bernd A1 - Meyer, Franc A1 - Braunschweig, Holger T1 - Isolation of diborenes and their 90°-twisted diradical congeners JF - Nature Communications N2 - Molecules containing multiple bonds between atoms—most often in the form of olefins—are ubiquitous in nature, commerce, and science, and as such have a huge impact on everyday life. Given their prominence, over the last few decades, frequent attempts have been made to perturb the structure and reactivity of multiply-bound species through bending and twisting. However, only modest success has been achieved in the quest to completely twist double bonds in order to homolytically cleave the associated π bond. Here, we present the isolation of double-bond-containing species based on boron, as well as their fully twisted diradical congeners, by the incorporation of attached groups with different electronic properties. The compounds comprise a structurally authenticated set of diamagnetic multiply-bound and diradical singly-bound congeners of the same class of compound. KW - chemical bonding KW - diradicals KW - organometallic chemistry KW - diborenes KW - carbenes KW - boron Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-160431 VL - 9 IS - Article number: 1197 ER - TY - INPR A1 - Englert, Lukas A1 - Stoy, Andreas A1 - Arrowsmith, Merle A1 - Müssig, Jonas H. A1 - Thaler, Melanie A1 - Deißenberger, Andrea A1 - Häfner, Alena A1 - Böhnke, Julian A1 - Hupp, Florian A1 - Seufert, Jens A1 - Mies, Jan A1 - Damme, Alexander A1 - Dellermann, Theresa A1 - Hammond, Kai A1 - Kupfer, Thomas A1 - Radacki, Krzysztof A1 - Thiess, Torsten A1 - Braunschweig, Holger T1 - Stable Lewis Base Adducts of Tetrahalodiboranes: Synthetic Methods and Structural Diversity T2 - Chemistry - A European Journal N2 - A series of 22 new bis(phosphine), bis(carbene) and bis(isonitrile) tetrahalodiborane adducts has been synthesized, either by direct adduct formation with highly sensitive B2X4 precursors (X = Cl, Br, I) or by ligand exchange at stable B2X4(SMe2)2 precursors (X = Cl, Br) with labile dimethylsulfide ligands. The isolated compounds have been fully characterized using NMR spectroscopic, (C,H,N)- elemental and, for 20 of these compounds, X-ray crystallographic analysis, revealing an unexpected variation in the bonding motifs. Besides the classical B2X4L2 diborane(6) adducts, some of the more sterically demanding carbene ligands induce a halide displacement leading to the first halide-bridged monocationic diboron species, [B2X3L2]A (A = BCl4, Br, I). Furthermore, low-temperature 1:1 reactions of B2Cl4 with sterically demanding N-heterocyclic carbenes led to the formation of kinetically unstable mono-adducts, one of which was structurally characterized. A comparison of the NMR and structural data of new and literature-known bis-adducts shows several trends pertaining to the nature of the halides and the stereoelectronic properties of the Lewis bases employed. KW - diborane(6) KW - Lewis-base adducts KW - ligand exchange KW - crystallography KW - NMR spectroscopy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184888 N1 - This is the pre-peer reviewed version of the following article: L. Englert, A. Stoy, M. Arrowsmith, J. H. Muessig, M. Thaler, A. Deißenberger, A. Häfner, J. Böhnke, F. Hupp, J. Seufert, J. Mies, A. Damme, T. Dellermann, K. Hammond, T. Kupfer, K. Radacki, T. Thiess, H. Braunschweig, Chem. Eur. J. 2019, 25, 8612. https://doi.org/10.1002/chem.201901437, which has been published in final form at https://doi.org/10.1002/chem.201901437. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER - TY - JOUR A1 - Ewing, William C. A1 - Dellermann, Theresa A1 - Angel Wong, Y. T. A1 - Mattock, James D. A1 - Vargas, Alfredo A1 - Bryce, David L. A1 - Dewhurst, Rian D. A1 - Braunschweig, Holger T1 - \(\pi\)‐Complexes of Diborynes with Main Group Atoms JF - Chemistry – An Asian Journal N2 - We present herein an in‐depth study of complexes in which a molecule containing a boron‐boron triple bond is bound to tellurate cations. The analysis allows the description of these salts as true π complexes between the B−B triple bond and the tellurium center. These complexes thus extend the well‐known Dewar‐Chatt‐Duncanson model of bonding to compounds made up solely of p block elements. Structural, spectroscopic and computational evidence is offered to argue that a set of recently reported heterocycles consisting of phenyltellurium cations complexed to diborynes bear all the hallmarks of \(\pi\)‐complexes in the \(\pi\)‐complex/metallacycle continuum envisioned by Joseph Chatt. Described as such, these compounds are unique in representing the extreme of a metal‐free continuum with conventional unsaturated three‐membered rings (cyclopropenes, azirenes, borirenes) occupying the opposite end. KW - boron KW - main group elements KW - solid-state NMR KW - \(\pi\) interactions KW - multiple bonds Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214677 VL - 15 IS - 10 SP - 1553 EP - 1557 ER - TY - JOUR A1 - Heß, Merlin A1 - Krummenacher, Ivo A1 - Dellermann, Theresa A1 - Braunschweig, Holger T1 - Rhodium-Mediated Stoichiometric Synthesis of Mono-, Bi-, and Bis-1,2-Azaborinines: 1-Rhoda-3,2-azaboroles as Reactive Precursors JF - Chemistry—A European Journal N2 - A series of highly substituted 1,2-azaborinines, including a phenylene-bridged bis-1,2-azaborinine, was synthesized from the reaction of 1,2-azaborete rhodium complexes with variously substituted alkynes. 1-Rhoda-3,2-azaborole complexes, which are accessible by phosphine addition to the corresponding 1,2-azaborete complexes, were also found to be suitable precursors for the synthesis of 1,2-azaborinines and readily reacted with alkynyl-substituted 1,2-azaborinines to generate new regioisomers of bi-1,2-azaborinines, which feature directly connected aromatic rings. Their molecular structures, which can be viewed as boron-nitrogen isosteres of biphenyls, show nearly perpendicular 1,2-azaborinine rings. The new method using rhodacycles instead of 1,2-azaborete complexes as precursors is shown to be more effective, allowing the synthesis of a wider range of 1,2-azaborinines. KW - structure elucidation KW - azaborinines KW - nitrogen heterocycles KW - cyclization KW - metallacycles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256830 VL - 27 IS - 37 ER - TY - JOUR A1 - Lindl, Felix A1 - Guo, Xueying A1 - Krummenacher, Ivo A1 - Rauch, Florian A1 - Rempel, Anna A1 - Paprocki, Valerie A1 - Dellermann, Theresa A1 - Stennett, Tom E. A1 - Lamprecht, Anna A1 - Brückner, Tobias A1 - Radacki, Krzysztof A1 - Bélanger-Chabot, Guillaume A1 - Marder, Todd B. A1 - Lin, Zhenyang A1 - Braunschweig, Holger T1 - Rethinking Borole Cycloaddition Reactivity JF - Chemistry—A European Journal N2 - Boroles are attracting broad interest for their myriad and diverse applications, including in synthesis, small molecule activation and functional materials. Their properties and reactivity are closely linked to the cyclic conjugated diene system, which has been shown to participate in cycloaddition reactions, such as the Diels-Alder reaction with alkynes. The reaction steps leading to boranorbornadienes, borepins and tricyclic boracyclohexenes from the thermal reaction of boroles with alkynes are seemingly well understood as judged from the literature. Herein, we question the long-established mechanistic picture of pericyclic rearrangements by demonstrating that seven-membered borepins (i. e., heptaphenylborepin and two derivatives substituted with a thienyl and chloride substituent on boron) exist in a dynamic equilibrium with the corresponding bicyclic boranorbornadienes, the direct Diels-Alder products, but are not isolable products from the reactions. Heating gradually converts the isomeric mixtures into fluorescent tricyclic boracyclohexenes, the most stable isomers in the series. Results from mechanistic DFT calculations reveal that the tricyclic compounds derive from the boranorbornadienes and not the borepins, which were previously believed to be intermediates in purely pericyclic processes. KW - pericyclic reaction KW - Boron KW - computational chemistry KW - isomer KW - isomerization Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256888 VL - 27 IS - 43 ER -