TY - JOUR A1 - Biedermann, Benedikt A1 - Bräuer, Stephan A1 - Denner, Ansgar A1 - Pellen, Mathieu A1 - Schumann, Steffen A1 - Thompson, Jennifer M. T1 - Automation of NLO QCD and EW corrections with SHERPA and RECOLA JF - European Physical Journal C N2 - This publication presents the combination of the one-loop matrix-element generator Recola with the multipurpose Monte Carlo program Sherpa. Since both programs are highly automated, the resulting Sherpa +Recola framework allows for the computation of – in principle – any Standard Model process at both NLO QCD and EW accuracy. To illustrate this, three representative LHC processes have been computed at NLO QCD and EW: vector-boson production in association with jets, off-shell Z-boson pair production, and the production of a top-quark pair in association with a Higgs boson. In addition to fixed-order computations, when considering QCD corrections, all functionalities of Sherpa, i.e. particle decays, QCD parton showers, hadronisation, underlying events, etc. can be used in combination with Recola. This is demonstrated by the merging and matching of one-loop QCD matrix elements for Drell–Yan production in association with jets to the parton shower. The implementation is fully automatised, thus making it a perfect tool for both experimentalists and theorists who want to use state-of-the-art predictions at NLO accuracy. KW - RECOLA KW - SHERPA KW - NLO QCD KW - EW KW - Higgs boson KW - Large Hadron Collider Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170615 VL - 77 IS - 492 ER - TY - JOUR A1 - Biedermann, Benedikt A1 - Denner, Ansgar A1 - Pellen, Mathieu T1 - Complete NLO corrections to W\(^{+}\)W\(^{+}\) scattering and its irreducible background at the LHC JF - Journal of High Energy Physics N2 - The process pp → μ\(^{+}\)ν\(_{μ}\)e\(^{+}\)ν\(_{e}\)jj receives several contributions of different orders in the strong and electroweak coupling constants. Using appropriate event selections, this process is dominated by vector-boson scattering (VBS) and has recently been measured at the LHC. It is thus of prime importance to estimate precisely each contribution. In this article we compute for the first time the full NLO QCD and electroweak corrections to VBS and its irreducible background processes with realistic experimental cuts. We do not rely on approximations but use complete amplitudes involving two different orders at tree level and three different orders at one-loop level. Since we take into account all interferences, at NLO level the corrections to the VBS process and to the QCD-induced irreducible background process contribute at the same orders. Hence the two processes cannot be unambiguously distinguished, and all contributions to the μ\(^{+}\)ν\(_{μ}\)e\(^{+}\)ν\(_{e}\)jj final state should be preferably measured together. KW - NLO computations KW - vector-boson scattering KW - Large Hadron Collider Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170157 VL - 10 IS - 124 ER - TY - JOUR A1 - Denner, Ansgar A1 - Lang, Jean-Nicolas A1 - Pellen, Mathieu A1 - Uccirati, Sandro T1 - Higgs production in association with off-shell top-antitop pairs at NLO EW and QCD at the LHC JF - Journal of High Energy Physics N2 - We present NLO electroweak corrections to Higgs production in association with off-shell top-antitop quark pairs. The full process pp → e +νeµ −ν¯µbb¯H is considered, and hence all interference, off-shell, and non-resonant contributions are taken into account. The electroweak corrections turn out to be below one per cent for the integrated cross section but can exceed 10% in certain phase-space regions. In addition to its phenomenological relevance, the computation constitutes a major technical achievement as the full NLO virtual corrections involving up to 9-point functions have been computed exactly. The results of the full computation are supported by two calculations in the double-pole approximation. These also allow to infer the effect of off-shell contributions and emphasise their importance especially for the run II of the LHC. Finally, we present combined predictions featuring both NLO electroweak and QCD corrections in a common set-up that will help the experimental collaborations in their quest of precisely measuring the aforementioned process. KW - high energy physics KW - NLO computations Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171871 IS - 2 ER - TY - JOUR A1 - Denner, Ansgar A1 - Pellen, Mathieu T1 - NLO electroweak corrections to off-shell top-antitop production with leptonic decays at the LHC JF - Journal of High Energy Phsyics N2 - For the first time the next-to-leading-order electroweak corrections to the full off-shell production of two top quarks that decay leptonically are presented. This calculation includes all off-shell, non-resonant, and interference effects for the 6-particle phase space. While the electroweak corrections are below one per cent for the integrated cross section, they reach up to 15% in the high-transverse-momentum region of distributions. To support the results of the complete one-loop calculation, we have in addition evaluated the electroweak corrections in two different pole approximations, one requiring two on-shell top quarks and one featuring two on-shell W bosons. While the former deviates by up to 10% from the full calculation for certain distributions, the latter provides a very good description for most observables. The increased centre-of-mass energy of the LHC makes the inclusion of electroweak corrections extremely relevant as they are particularly large in the Sudakov regime where new physics is expected to be probed. KW - NLO Computations Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166415 VL - 08 IS - 155 ER -