TY - JOUR A1 - Rutkowski, Andrzej J. A1 - Erhard, Florian A1 - L'Hernault, Anne A1 - Bonfert, Thomas A1 - Schilhabel, Markus A1 - Crump, Colin A1 - Rosenstiel, Philip A1 - Efstathiou, Stacey A1 - Zimmer, Ralf A1 - Friedel, Caroline C. A1 - Dölken, Lars T1 - Widespread disruption of host transcription termination in HSV-1 infection JF - Nature Communications N2 - Herpes simplex virus 1 (HSV-1) is an important human pathogen and a paradigm for virus-induced host shut-off. Here we show that global changes in transcription and RNA processing and their impact on translation can be analysed in a single experimental setting by applying 4sU-tagging of newly transcribed RNA and ribosome profiling to lytic HSV-1 infection. Unexpectedly, we find that HSV-1 triggers the disruption of transcription termination of cellular, but not viral, genes. This results in extensive transcription for tens of thousands of nucleotides beyond poly(A) sites and into downstream genes, leading to novel intergenic splicing between exons of neighbouring cellular genes. As a consequence, hundreds of cellular genes seem to be transcriptionally induced but are not translated. In contrast to previous reports, we show that HSV-1 does not inhibit co-transcriptional splicing. Our approach thus substantially advances our understanding of HSV-1 biology and establishes HSV-1 as a model system for studying transcription termination. KW - herpes simplex virus KW - RNA polymerase II KW - gene expression KW - alpha-globin KW - motif discovery KW - regulatory protein ICP27 KW - poly(A) site usage KW - pre-messenger RNA KW - splicing inhibition KW - type 1 ICP27 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148643 VL - 6 IS - 7126 ER - TY - JOUR A1 - Wyler, Emanuel A1 - Menegatti, Jennifer A1 - Franke, Vedran A1 - Kocks, Christine A1 - Boltengagen, Anastasiya A1 - Hennig, Thomas A1 - Theil, Kathrin A1 - Rutkowski, Andrzej A1 - Ferrai, Carmelo A1 - Baer, Laura A1 - Kermas, Lisa A1 - Friedel, Caroline A1 - Rajewsky, Nikolaus A1 - Akalin, Altuna A1 - Dölken, Lars A1 - Grässer, Friedrich A1 - Landthaler, Markus T1 - Widespread activation of antisense transcription of the host genome during herpes simplex virus 1 infection JF - Genome Biology N2 - Background Herpesviruses can infect a wide range of animal species. Herpes simplex virus 1 (HSV-1) is one of the eight herpesviruses that can infect humans and is prevalent worldwide. Herpesviruses have evolved multiple ways to adapt the infected cells to their needs, but knowledge about these transcriptional and post-transcriptional modifications is sparse. Results Here, we show that HSV-1 induces the expression of about 1000 antisense transcripts from the human host cell genome. A subset of these is also activated by the closely related varicella zoster virus. Antisense transcripts originate either at gene promoters or within the gene body, and they show different susceptibility to the inhibition of early and immediate early viral gene expression. Overexpression of the major viral transcription factor ICP4 is sufficient to turn on a subset of antisense transcripts. Histone marks around transcription start sites of HSV-1-induced and constitutively transcribed antisense transcripts are highly similar, indicating that the genetic loci are already poised to transcribe these novel RNAs. Furthermore, an antisense transcript overlapping with the BBC3 gene (also known as PUMA) transcriptionally silences this potent inducer of apoptosis in cis. Conclusions We show for the first time that a virus induces widespread antisense transcription of the host cell genome. We provide evidence that HSV-1 uses this to downregulate a strong inducer of apoptosis. Our findings open new perspectives on global and specific alterations of host cell transcription by viruses. KW - Virology KW - Herpes KW - Virus KW - Antisense KW - Transcription KW - IncRNA KW - ICP4 KW - BBC3 KW - NFKB Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173381 VL - 18 ER - TY - JOUR A1 - Djakovic, Lara A1 - Hennig, Thomas A1 - Reinisch, Katharina A1 - Milić, Andrea A1 - Whisnant, Adam W. A1 - Wolf, Katharina A1 - Weiß, Elena A1 - Haas, Tobias A1 - Grothey, Arnhild A1 - Jürges, Christopher S. A1 - Kluge, Michael A1 - Wolf, Elmar A1 - Erhard, Florian A1 - Friedel, Caroline C. A1 - Dölken, Lars T1 - The HSV-1 ICP22 protein selectively impairs histone repositioning upon Pol II transcription downstream of genes JF - Nature Communications N2 - Herpes simplex virus 1 (HSV-1) infection and stress responses disrupt transcription termination by RNA Polymerase II (Pol II). In HSV-1 infection, but not upon salt or heat stress, this is accompanied by a dramatic increase in chromatin accessibility downstream of genes. Here, we show that the HSV-1 immediate-early protein ICP22 is both necessary and sufficient to induce downstream open chromatin regions (dOCRs) when transcription termination is disrupted by the viral ICP27 protein. This is accompanied by a marked ICP22-dependent loss of histones downstream of affected genes consistent with impaired histone repositioning in the wake of Pol II. Efficient knock-down of the ICP22-interacting histone chaperone FACT is not sufficient to induce dOCRs in ΔICP22 infection but increases dOCR induction in wild-type HSV-1 infection. Interestingly, this is accompanied by a marked increase in chromatin accessibility within gene bodies. We propose a model in which allosteric changes in Pol II composition downstream of genes and ICP22-mediated interference with FACT activity explain the differential impairment of histone repositioning downstream of genes in the wake of Pol II in HSV-1 infection. KW - herpes virus KW - transcription Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358161 VL - 14 ER - TY - JOUR A1 - Lodha, Manivel A1 - Erhard, Florian A1 - Dölken, Lars A1 - Prusty, Bhupesh K. T1 - The hidden enemy within: non-canonical peptides in virus-induced autoimmunity JF - Frontiers in Microbiology N2 - Viruses play a key role in explaining the pathogenesis of various autoimmune disorders, whose underlying principle is defined by the activation of autoreactive T-cells. In many cases, T-cells escape self-tolerance due to the failure in encountering certain MHC-I self-peptide complexes at substantial levels, whose peptides remain invisible from the immune system. Over the years, contribution of unstable defective ribosomal products (DRiPs) in immunosurveillance has gained prominence. A class of unstable products emerge from non-canonical translation and processing of unannotated mammalian and viral ORFs and their peptides are cryptic in nature. Indeed, high throughput sequencing and proteomics have revealed that a substantial portion of our genomes comprise of non-canonical ORFs, whose generation is significantly modulated during disease. Many of these ORFs comprise short ORFs (sORFs) and upstream ORFs (uORFs) that resemble DRiPs and may hence be preferentially presented. Here, we discuss how such products, normally “hidden” from the immune system, become abundant in viral infections activating autoimmune T-cells, by discussing their emerging role in infection and disease. Finally, we provide a perspective on how these mechanisms can explain several autoimmune disorders in the wake of the COVID-19 pandemic. KW - viruses KW - cryptic peptides KW - autoimmunity KW - defective ribosomal products KW - non-canonical translation KW - COVID-19 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-263053 SN - 1664-302X VL - 13 ER - TY - INPR A1 - Hennig, Thomas A1 - Prusty, Archana B. A1 - Kaufer, Benedikt A1 - Whisnant, Adam W. A1 - Lodha, Manivel A1 - Enders, Antje A1 - Thomas, Julius A1 - Kasimir, Francesca A1 - Grothey, Arnhild A1 - Herb, Stefanie A1 - Jürges, Christopher A1 - Meister, Gunter A1 - Erhard, Florian A1 - Dölken, Lars A1 - Prusty, Bhupesh K. T1 - Selective inhibition of microRNA processing by a herpesvirus-encoded microRNA triggers virus reactivation from latency N2 - Herpesviruses have mastered host cell modulation and immune evasion to augment productive infection, life-long latency and reactivation thereof 1,2. A long appreciated, yet elusively defined relationship exists between the lytic-latent switch and viral non-coding RNAs 3,4. Here, we identify miRNA-mediated inhibition of miRNA processing as a novel cellular mechanism that human herpesvirus 6A (HHV-6A) exploits to disrupt mitochondrial architecture, evade intrinsic host defense and drive the latent-lytic switch. We demonstrate that virus-encoded miR-aU14 selectively inhibits the processing of multiple miR-30 family members by direct interaction with the respective pri-miRNA hairpin loops. Subsequent loss of miR-30 and activation of miR-30/p53/Drp1 axis triggers a profound disruption of mitochondrial architecture, which impairs induction of type I interferons and is necessary for both productive infection and virus reactivation. Ectopic expression of miR-aU14 was sufficient to trigger virus reactivation from latency thereby identifying it as a readily drugable master regulator of the herpesvirus latent-lytic switch. Our results show that miRNA-mediated inhibition of miRNA processing represents a generalized cellular mechanism that can be exploited to selectively target individual members of miRNA families. We anticipate that targeting miR-aU14 provides exciting therapeutic options for preventing herpesvirus reactivations in HHV-6-associated disorders like myalgic encephalitis/chronic fatigue syndrome (ME/CFS) and Long-COVID. KW - Herpesvirus KW - HHV-6 KW - miRNA processing KW - miR-30 KW - mitochondria KW - fusion and fission KW - type I interferon KW - latency KW - virus reactivation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267858 UR - https://doi.org/10.21203/rs.3.rs-820696/v1 ET - submitted version ER - TY - JOUR A1 - Liu, Fengming A1 - Han, Kun A1 - Blair, Robert A1 - Kenst, Kornelia A1 - Qin, Zhongnan A1 - Upcin, Berin A1 - Wörsdörfer, Philipp A1 - Midkiff, Cecily C. A1 - Mudd, Joseph A1 - Belyaeva, Elizaveta A1 - Milligan, Nicholas S. A1 - Rorison, Tyler D. A1 - Wagner, Nicole A1 - Bodem, Jochen A1 - Dölken, Lars A1 - Aktas, Bertal H. A1 - Vander Heide, Richard S. A1 - Yin, Xiao-Ming A1 - Kolls, Jay K. A1 - Roy, Chad J. A1 - Rappaport, Jay A1 - Ergün, Süleyman A1 - Qin, Xuebin T1 - SARS-CoV-2 Infects Endothelial Cells In Vivo and In Vitro JF - Frontiers in Cellular and Infection Microbiology N2 - SARS-CoV-2 infection can cause fatal inflammatory lung pathology, including thrombosis and increased pulmonary vascular permeability leading to edema and hemorrhage. In addition to the lung, cytokine storm-induced inflammatory cascade also affects other organs. SARS-CoV-2 infection-related vascular inflammation is characterized by endotheliopathy in the lung and other organs. Whether SARS-CoV-2 causes endotheliopathy by directly infecting endothelial cells is not known and is the focus of the present study. We observed 1) the co-localization of SARS-CoV-2 with the endothelial cell marker CD31 in the lungs of SARS-CoV-2-infected mice expressing hACE2 in the lung by intranasal delivery of adenovirus 5-hACE2 (Ad5-hACE2 mice) and non-human primates at both the protein and RNA levels, and 2) SARS-CoV-2 proteins in endothelial cells by immunogold labeling and electron microscopic analysis. We also detected the co-localization of SARS-CoV-2 with CD31 in autopsied lung tissue obtained from patients who died from severe COVID-19. Comparative analysis of RNA sequencing data of the lungs of infected Ad5-hACE2 and Ad5-empty (control) mice revealed upregulated KRAS signaling pathway, a well-known pathway for cellular activation and dysfunction. Further, we showed that SARS-CoV-2 directly infects mature mouse aortic endothelial cells (AoECs) that were activated by performing an aortic sprouting assay prior to exposure to SARS-CoV-2. This was demonstrated by co-localization of SARS-CoV-2 and CD34 by immunostaining and detection of viral particles in electron microscopic studies. Moreover, the activated AoECs became positive for ACE-2 but not quiescent AoECs. Together, our results indicate that in addition to pneumocytes, SARS-CoV-2 also directly infects mature vascular endothelial cells in vivo and ex vivo, which may contribute to cardiovascular complications in SARS-CoV-2 infection, including multipleorgan failure. KW - endothelial cell infection KW - animal models KW - SARS-CoV-2 KW - aorta ring KW - hACE2 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241948 SN - 2235-2988 VL - 11 ER - TY - JOUR A1 - Börtlein, Charlene A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Dölken, Lars A1 - Avota, Elita T1 - Role of neutral sphingomyelinase-2 (NSM 2) in the control of T cell plasma membrane lipid composition and cholesterol homeostasis JF - Frontiers in Cell and Developmental Biology N2 - The activity of neutral sphingomyelinase-2 (NSM2) to catalyze the conversion of sphingomyelin (SM) to ceramide and phosphocholine at the cytosolic leaflet of plasma membrane (PM) is important in T cell receptor (TCR) signaling. We recently identified PKCζ as a major NSM2 downstream effector which regulates microtubular polarization. It remained, however, unclear to what extent NSM2 activity affected overall composition of PM lipids and downstream effector lipids in antigen stimulated T cells. Here, we provide a detailed lipidomics analyses on PM fractions isolated from TCR stimulated wild type and NSM2 deficient (ΔNSM) Jurkat T cells. This revealed that in addition to that of sphingolipids, NSM2 depletion also affected concentrations of many other lipids. In particular, NSM2 ablation resulted in increase of lyso-phosphatidylcholine (LPC) and lyso-phosphatidylethanolamine (LPE) which both govern PM biophysical properties. Crucially, TCR dependent upregulation of the important T cell signaling lipid diacylglycerol (DAG), which is fundamental for activation of conventional and novel PKCs, was abolished in ΔNSM cells. Moreover, NSM2 activity was found to play an important role in PM cholesterol transport to the endoplasmic reticulum (ER) and production of cholesteryl esters (CE) there. Most importantly, CE accumulation was essential to sustain human T cell proliferation. Accordingly, inhibition of CE generating enzymes, the cholesterol acetyltransferases ACAT1/SOAT1 and ACAT2/SOAT2, impaired TCR driven expansion of both CD4\(^+\) and CD8\(^+\) T cells. In summary, our study reveals an important role of NSM2 in regulating T cell functions by its multiple effects on PM lipids and cholesterol homeostasis. KW - neutral sphingomyelinase-2 KW - T cell receptor KW - plasma membrane KW - lyso-phospholipids KW - diacylglycerol KW - cholesteryl ester Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-190596 SN - 2296-634X VL - 7 IS - 226 ER - TY - JOUR A1 - Dölken, Lars A1 - Stich, August A1 - Spinner, Christoph D. T1 - Remdesivir for Early COVID-19 Treatment of High-Risk Individuals Prior to or at Early Disease Onset — Lessons Learned JF - Viruses N2 - After more than one year of the COVID-19 pandemic, antiviral treatment options against SARS-CoV-2 are still severely limited. High hopes that had initially been placed on antiviral drugs like remdesivir have so far not been fulfilled. While individual case reports provide striking evidence for the clinical efficacy of remdesivir in the right clinical settings, major trials failed to demonstrate this. Here, we highlight and discuss the key findings of these studies and underlying reasons for their failure. We elaborate on how such shortcomings should be prevented in future clinical trials and pandemics. We suggest in conclusion that any novel antiviral agent that enters human trials should first be tested in a post-exposure setting to provide rapid and solid evidence for its clinical efficacy before initiating further time-consuming and costly clinical trials for more advanced disease. In the COVID-19 pandemic this might have established remdesivir early on as an efficient antiviral agent at a more suitable disease stage which would have saved many lives, in particular in large outbreaks within residential care homes. KW - COVID-19 KW - SARS-CoV-2 KW - antiviral treatment KW - remdesivir Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239648 SN - 1999-4915 VL - 13 IS - 6 ER - TY - JOUR A1 - Murakawa, Yasuhiro A1 - Hinz, Michael A1 - Mothes, Janina A1 - Schuetz, Anja A1 - Uhl, Michael A1 - Wyler, Emanuel A1 - Yasuda, Tomoharu A1 - Mastrobuoni, Guido A1 - Friedel, Caroline C. A1 - Dölken, Lars A1 - Kempa, Stefan A1 - Schmidt-Supprian, Marc A1 - Blüthgen, Nils A1 - Backofen, Rolf A1 - Heinemann, Udo A1 - Wolf, Jana A1 - Scheidereit, Claus A1 - Landthaler, Markus T1 - RC3H1 post-transcriptionally regulates A20 mRNA and modulates the activity of the IKK/NF-\(\kappa\)B pathway JF - Nature Communications N2 - The RNA-binding protein RC3H1 (also known as ROQUIN) promotes TNF\(\alpha\) mRNA decay via a 3'UTR constitutive decay element (CDE). Here we applied PAR-CLIP to human RC3H1 to identify ~3,800 mRNA targets with >16,000 binding sites. A large number of sites are distinct from the consensus CDE and revealed a structure-sequence motif with U-rich sequences embedded in hairpins. RC3H1 binds preferentially short-lived and DNA damage-induced mRNAs, indicating a role of this RNA-binding protein in the post-transcriptional regulation of the DNA damage response. Intriguingly, RC3H1 affects expression of the NF-\(\kappa\)B pathway regulators such as I\(\kappa\)B\(\alpha\) and A20. RC3H1 uses ROQ and Zn-finger domains to contact a binding site in the A20 3'UTR, demonstrating a not yet recognized mode of RC3H1 binding. Knockdown of RC3H1 resulted in increased A20 protein expression, thereby interfering with I\(\kappa\)B kinase and NF-\(\kappa\)B activities, demonstrating that RC3H1 can modulate the activity of the IKK/NF-\(\kappa\)B pathway. KW - large gene lists KW - decay KW - identification KW - stress KW - binding protein KW - RQQ domain KW - autoimmunity KW - complex KW - degradation KW - motifs Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151596 VL - 6 IS - 7367 ER - TY - JOUR A1 - Fux, Robert A1 - Arndt, Daniela A1 - Langenmayer, Martin C. A1 - Schwaiger, Julia A1 - Ferling, Hermann A1 - Fischer, Nicole A1 - Indenbirken, Daniela A1 - Grundhoff, Adam A1 - Dölken, Lars A1 - Adamek, Mikolaj A1 - Steinhagen, Dieter A1 - Sutter, Gerd T1 - Piscine orthoreovirus 3 is not the causative pathogen of proliferative darkening syndrome (PDS) of brown trout (Salmo trutta fario) JF - Viruses N2 - The proliferative darkening syndrome (PDS) is a lethal disease of brown trout (Salmo trutta fario) which occurs in several alpine Bavarian limestone rivers. Because mortality can reach 100%, PDS is a serious threat for affected fish populations. Recently, Kuehn and colleagues reported that a high throughput RNA sequencing approach identified a piscine orthoreovirus (PRV) as a causative agent of PDS. We investigated samples from PDS-affected fish obtained from two exposure experiments performed at the river Iller in 2008 and 2009. Using a RT-qPCR and a well-established next-generation RNA sequencing pipeline for pathogen detection, PRV-specific RNA was not detectable in PDS fish from 2009. In contrast, PRV RNA was readily detectable in several organs from diseased fish in 2008. However, similar virus loads were detectable in the control fish which were not exposed to Iller water and did not show any signs of the disease. Therefore, we conclude that PRV is not the causative agent of PDS of brown trout in the rhithral region of alpine Bavarian limestone rivers. The abovementioned study by Kuehn used only samples from the exposure experiment from 2008 and detected a subclinical PRV bystander infection. Work is ongoing to identify the causative agent of PDS. KW - proliferative darkening syndrome KW - black trout syndrome KW - piscine orthoreovirus KW - orthoreovirus KW - brown trout KW - Salmo trutta fario KW - next generation sequencing KW - RT-qPCR Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196991 SN - 1999-4915 VL - 11 IS - 2 ER -