TY - JOUR A1 - Salvador, Ellaine A1 - Kessler, Almuth F. A1 - Domröse, Dominik A1 - Hörmann, Julia A1 - Schaeffer, Clara A1 - Giniunaite, Aiste A1 - Burek, Malgorzata A1 - Tempel-Brami, Catherine A1 - Voloshin, Tali A1 - Volodin, Alexandra A1 - Zeidan, Adel A1 - Giladi, Moshe A1 - Ernestus, Ralf-Ingo A1 - Löhr, Mario A1 - Förster, Carola Y. A1 - Hagemann, Carsten T1 - Tumor Treating Fields (TTFields) reversibly permeabilize the blood–brain barrier in vitro and in vivo JF - Biomolecules N2 - Despite the availability of numerous therapeutic substances that could potentially target CNS disorders, an inability of these agents to cross the restrictive blood–brain barrier (BBB) limits their clinical utility. Novel strategies to overcome the BBB are therefore needed to improve drug delivery. We report, for the first time, how Tumor Treating Fields (TTFields), approved for glioblastoma (GBM), affect the BBB’s integrity and permeability. Here, we treated murine microvascular cerebellar endothelial cells (cerebEND) with 100–300 kHz TTFields for up to 72 h and analyzed the expression of barrier proteins by immunofluorescence staining and Western blot. In vivo, compounds normally unable to cross the BBB were traced in healthy rat brain following TTFields administration at 100 kHz. The effects were analyzed via MRI and immunohistochemical staining of tight-junction proteins. Furthermore, GBM tumor-bearing rats were treated with paclitaxel (PTX), a chemotherapeutic normally restricted by the BBB combined with TTFields at 100 kHz. The tumor volume was reduced with TTFields plus PTX, relative to either treatment alone. In vitro, we demonstrate that TTFields transiently disrupted BBB function at 100 kHz through a Rho kinase-mediated tight junction claudin-5 phosphorylation pathway. Altogether, if translated into clinical use, TTFields could represent a novel CNS drug delivery strategy. KW - blood–brain barrier KW - TTFields KW - CNS disorders Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288057 SN - 2218-273X VL - 12 IS - 10 ER - TY - JOUR A1 - Salvador, Ellaine A1 - Köppl, Theresa A1 - Hörmann, Julia A1 - Schönhärl, Sebastian A1 - Bugaeva, Polina A1 - Kessler, Almuth F. A1 - Burek, Malgorzata A1 - Ernestus, Ralf-Ingo A1 - Löhr, Mario A1 - Hagemann, Carsten T1 - Tumor Treating Fields (TTFields) induce cell junction alterations in a human 3D in vitro model of the blood-brain barrier JF - Pharmaceutics N2 - In a recent study, we showed in an in vitro murine cerebellar microvascular endothelial cell (cerebEND) model as well as in vivo in rats that Tumor-Treating Fields (TTFields) reversibly open the blood–brain barrier (BBB). This process is facilitated by delocalizing tight junction proteins such as claudin-5 from the membrane to the cytoplasm. In investigating the possibility that the same effects could be observed in human-derived cells, a 3D co-culture model of the BBB was established consisting of primary microvascular brain endothelial cells (HBMVEC) and immortalized pericytes, both of human origin. The TTFields at a frequency of 100 kHz administered for 72 h increased the permeability of our human-derived BBB model. The integrity of the BBB had already recovered 48 h post-TTFields, which is earlier than that observed in cerebEND. The data presented herein validate the previously observed effects of TTFields in murine models. Moreover, due to the fact that human cell-based in vitro models more closely resemble patient-derived entities, our findings are highly relevant for pre-clinical studies. KW - blood-brain barrier KW - Tumor-Treating Fields (TTFields) KW - CNS disorders KW - human brain microvascular endothelial cells (HBMVEC) KW - human cells KW - 3D in vitro model Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304830 SN - 1999-4923 VL - 15 IS - 1 ER - TY - JOUR A1 - Feldheim, Jonas A1 - Kessler, Almuth F. A1 - Schmitt, Dominik A1 - Salvador, Ellaine A1 - Monoranu, Camelia M. A1 - Feldheim, Julia J. A1 - Ernestus, Ralf-Ingo A1 - Löhr, Mario A1 - Hagemann, Carsten T1 - Ribosomal Protein S27/Metallopanstimulin-1 (RPS27) in Glioma — A New Disease Biomarker? JF - Cancers N2 - Despite its significant overexpression in several malignant neoplasms, the expression of RPS27 in the central nervous system (CNS) is widely unknown. We identified the cell types expressing RPS27 in the CNS under normal and disease conditions. We acquired specimens of healthy brain (NB), adult pilocytic astrocytoma (PA) World Health Organization (WHO) grade I, anaplastic PA WHO grade III, gliomas WHO grade II/III with or without isocitrate dehydrogenase (IDH) mutation, and glioblastoma multiforme (GBM). RPS27 protein expression was examined by immunohistochemistry and double-fluorescence staining and its mRNA expression quantified by RT-PCR. Patients’ clinical and tumor characteristics were collected retrospectively. RPS27 protein was specifically expressed in tumor cells and neurons, but not in healthy astrocytes. In tumor tissue, most macrophages were positive, while this was rarely the case in inflamed tissue. Compared to NB, RPS27 mRNA was in mean 6.2- and 8.8-fold enhanced in gliomas WHO grade II/III with (p < 0.01) and without IDH mutation (p = 0.01), respectively. GBM displayed a 4.6-fold increased mean expression (p = 0.02). Although RPS27 expression levels did not affect the patients’ survival, their association with tumor cells and tumor-associated macrophages provides a rationale for a future investigation of a potential function during gliomagenesis and tumor immune response. KW - glioblastoma multiforme KW - low-grade glioma KW - astrocytoma KW - recurrence KW - relapse KW - mRNA KW - protein KW - brain KW - expression KW - MPS1 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203648 SN - 2072-6694 VL - 12 IS - 5 ER - TY - JOUR A1 - Löhr, Mario A1 - Kessler, Almuth F. A1 - Monoranu, Camelia-Maria A1 - Grosche, Jens A1 - Linsenmann, Thomas A1 - Ernestus, Ralf-Ingo A1 - Härtig, Wolfgang T1 - Primary brain amyloidoma, both a neoplastic and a neurodegenerative disease: a case report JF - BMC Neurology N2 - Background Scattered extracellular deposits of amyloid within the brain parenchyma can be found in a heterogeneous group of diseases. Its condensed accumulation in the white matter without evidence for systemic amyloidosis is known as primary brain amyloidoma (PBA). Although originally considered as a tumor-like lesion by its space-occupying effect, this condition displays also common hallmarks of a neurodegenerative disorder. Case presentation A 50-year-old woman presented with a mild cognitive decline and seizures with a right temporal, irregular and contrast-enhancing mass on magnetic resonance imaging. Suspecting a high-grade glioma, the firm tumor was subtotally resected. Neuropathological examination showed no glioma, but distinct features of a neurodegenerative disorder. The lesion was composed of amyloid AL λ aggregating within the brain parenchyma as well as the adjacent vessels, partially obstructing the vascular lumina. Immunostaining confirmed a distinct perivascular inflammatory reaction. After removal of the PBA, mnestic impairments improved considerably, the clinical course and MRI-results are stable in the 8-year follow-up. Conclusion Based on our histopathological findings, we propose to regard the clinicopathological entity of PBA as an overlap between a neoplastic and neurodegenerative disorder. Since the lesions are locally restricted, they might be amenable to surgery with the prospect of a definite cure. KW - amyloidoma KW - neurooncology KW - brain tumor KW - neurodegenerative disease KW - neurovascular unit Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200341 VL - 19 ER - TY - JOUR A1 - Kessler, Almuth F. A1 - Feldheim, Jonas A1 - Schmitt, Dominik A1 - Feldheim, Julia J. A1 - Monoranu, Camelia M. A1 - Ernestus, Ralf-Ingo A1 - Löhr, Mario A1 - Hagemann, Carsten T1 - Monopolar Spindle 1 Kinase (MPS1/TTK) mRNA Expression is Associated with Earlier Development of Clinical Symptoms, Tumor Aggressiveness and Survival of Glioma Patients JF - Biomedicines N2 - Inhibition of the protein kinase MPS1, a mitotic spindle-checkpoint regulator, reinforces the effects of multiple therapies against glioblastoma multiforme (GBM) in experimental settings. We analyzed MPS1 mRNA-expression in gliomas WHO grade II, III and in clinical subgroups of GBM. Data were obtained by qPCR analysis of tumor and healthy brain specimens and correlated with the patients’ clinical data. MPS1 was overexpressed in all gliomas on an mRNA level (ANOVA, p < 0.01) and correlated with tumor aggressiveness. We explain previously published conflicting results on survival: high MPS1 was associated with poorer long term survival when all gliomas were analyzed combined in one group (Cox regression: t < 24 months, p = 0.009, Hazard ratio: 8.0, 95% CI: 1.7–38.4), with poorer survival solely in low-grade gliomas (LogRank: p = 0.02, Cox regression: p = 0.06, Hazard-Ratio: 8.0, 95% CI: 0.9–66.7), but not in GBM (LogRank: p > 0.05). This might be due to their lower tumor volume at the therapy start. GBM patients with high MPS1 mRNA-expression developed clinical symptoms at an earlier stage. This, however, did not benefit their overall survival, most likely due to the more aggressive tumor growth. Since MPS1 mRNA-expression in gliomas was enhanced with increasing tumor aggressiveness, patients with the worst outcome might benefit best from a treatment directed against MPS1. KW - glioblastoma multiforme KW - low-grade glioma KW - astrocytoma KW - recurrence KW - multifocal growth KW - mRNA expression KW - MPS1 KW - TTK KW - therapy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236105 VL - 8 IS - 7 ER - TY - JOUR A1 - Linsenmann, Thomas A1 - Monoranu, Camelia M. A1 - Vince, Giles H. A1 - Westermaier, Thomas A1 - Hagemann, Carsten A1 - Kessler, Almuth F. A1 - Ernestus, Ralf-Ingo A1 - Löhr, Mario T1 - Long-term tumor control of spinal dissemination of cerebellar glioblastoma multiforme by combined adjuvant bevacizumab antibody therapy: a case report N2 - Background Glioblastoma multiforme located in the posterior fossa is extremely rare with a frequency up to 3.4%. Compared with glioblastoma of the hemispheres the prognosis of infratentorial glioblastoma seems to be slightly better. Absence of brainstem invasion and low expression rates of epidermal growth factor receptor are described as factors for long-time survival due to the higher radiosensitivity of these tumors. Case presentation In this case study, we report a German female patient with an exophytic glioblastoma multiforme arising from the cerebellar tonsil and a secondary spinal manifestation. Furthermore, the tumor showed no O (6)-Methylguanine-DNA methyltransferase promotor-hypermethylation and no isocitrate dehydrogenase 1 mutations. All these signs are accompanied by significantly shorter median overall survival. A long-term tumor control of the spinal metastases was achieved by a combined temozolomide/bevacizumab and irradiation therapy, as part of a standard care administered by the treating physician team. Conclusion To our knowledge this is the first published case of a combined cerebellar exophytic glioblastoma with a subsequent solid spinal manifestation. Furthermore this case demonstrates a benefit undergoing this special adjuvant therapy regime in terms of overall survival. Due to the limited overall prognosis of the disease, spinal manifestations of glioma are rarely clinically relevant. The results of our instructive case, however, with a positive effect on both life quality and survival warrant treating future patients in the frame of a prospective clinical study. KW - Glioblastoma KW - Spinal dissemination KW - Bevacizumab KW - Temozolomide KW - Irradiation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-110536 ER - TY - JOUR A1 - Nickl, Vera A1 - Schulz, Ellina A1 - Salvador, Ellaine A1 - Trautmann, Laureen A1 - Diener, Leopold A1 - Kessler, Almuth F. A1 - Monoranu, Camelia M. A1 - Dehghani, Faramarz A1 - Ernestus, Ralf-Ingo A1 - Löhr, Mario A1 - Hagemann, Carsten T1 - Glioblastoma-derived three-dimensional ex vivo models to evaluate effects and efficacy of Tumor Treating Fields (TTFields) JF - Cancers N2 - Simple Summary In glioblastoma, tumor recurrence is inevitable and the prognosis of patients is poor, despite multidisciplinary treatment approaches involving surgical resection, radiotherapy and chemotherapy. Recently, Tumor Treating Fields (TTFields) have been added to the therapeutic set-up. These alternating electric fields are applied to glioblastoma at 200 kHz frequency via arrays placed on the shaved scalp of patients. Patients show varying response to this therapy. Molecular effects of TTFields have been investigated largely in cell cultures and animal models, but not in patient tissue samples. Acquisition of matched treatment-naïve and recurrent patient tissues is a challenge. Therefore, we suggest three reliable patient-derived three-dimensional ex vivo models (primary cells grown as microtumors on murine organotypic hippocampal slices, organoids and tumor slice cultures) which may facilitate prediction of patients’ treatment responses and provide important insights into clinically relevant cellular and molecular alterations under TTFields. Abstract Glioblastoma (GBM) displays a wide range of inter- and intra-tumoral heterogeneity contributing to therapeutic resistance and relapse. Although Tumor Treating Fields (TTFields) are effective for the treatment of GBM, there is a lack of ex vivo models to evaluate effects on patients’ tumor biology or to screen patients for treatment efficacy. Thus, we adapted patient-derived three-dimensional tissue culture models to be compatible with TTFields application to tissue culture. Patient-derived primary cells (PDPC) were seeded onto murine organotypic hippocampal slice cultures (OHSC), and microtumor development with and without TTFields at 200 kHz was observed. In addition, organoids were generated from acute material cultured on OHSC and treated with TTFields. Lastly, the effect of TTFields on expression of the Ki67 proliferation marker was evaluated on cultured GBM slices. Microtumors exhibited increased sensitivity towards TTFields compared to monolayer cell cultures. TTFields affected tumor growth and viability, as the size of microtumors and the percentage of Ki67-positive cells decreased after treatment. Nevertheless, variability in the extent of the response was preserved between different patient samples. Therefore, these pre-clinical GBM models could provide snapshots of the tumor to simulate patient treatment response and to investigate molecular mechanisms of response and resistance. KW - glioblastoma KW - Tumor Treating Fields (TTFields) KW - organotypic hippocampal slice cultures (OHSC) KW - organoids KW - tumor slice cultures KW - 3D ex vivo models Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290340 SN - 2072-6694 VL - 14 IS - 21 ER - TY - JOUR A1 - Feldheim, Jonas A1 - Kessler, Almuth F. A1 - Feldheim, Julia J. A1 - Schulz, Ellina A1 - Wend, David A1 - Lazaridis, Lazaros A1 - Kleinschnitz, Christoph A1 - Glas, Martin A1 - Ernestus, Ralf-Ingo A1 - Brandner, Sebastian A1 - Monoranu, Camelia M. A1 - Löhr, Mario A1 - Hagemann, Carsten T1 - Effects of long-term temozolomide treatment on glioblastoma and astrocytoma WHO grade 4 stem-like cells JF - International Journal of Molecular Sciences N2 - Glioblastoma leads to a fatal course within two years in more than two thirds of patients. An essential cornerstone of therapy is chemotherapy with temozolomide (TMZ). The effect of TMZ is counteracted by the cellular repair enzyme O\(^6\)-methylguanine-DNA methyltransferase (MGMT). The MGMT promoter methylation, the main regulator of MGMT expression, can change from primary tumor to recurrence, and TMZ may play a significant role in this process. To identify the potential mechanisms involved, three primary stem-like cell lines (one astrocytoma with the mutation of the isocitrate dehydrogenase (IDH), CNS WHO grade 4 (HGA)), and two glioblastoma (IDH-wildtype, CNS WHO grade 4) were treated with TMZ. The MGMT promoter methylation, migration, proliferation, and TMZ-response of the tumor cells were examined at different time points. The strong effects of TMZ treatment on the MGMT methylated cells were observed. Furthermore, TMZ led to a loss of the MGMT promoter hypermethylation and induced migratory rather than proliferative behavior. Cells with the unmethylated MGMT promoter showed more aggressive behavior after treatment, while HGA cells reacted heterogenously. Our study provides further evidence to consider the potential adverse effects of TMZ chemotherapy and a rationale for investigating potential relationships between TMZ treatment and change in the MGMT promoter methylation during relapse. KW - glioblastoma KW - astrocytoma KW - IDH KW - MGMT KW - therapy KW - temozolomide KW - cancer stem cells Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284417 SN - 1422-0067 VL - 23 IS - 9 ER - TY - JOUR A1 - Hagemann, Carsten A1 - Neuhaus, Nikolas A1 - Dahlmann, Mathias A1 - Kessler, Almuth F. A1 - Kobelt, Dennis A1 - Herrmann, Pia A1 - Eyrich, Matthias A1 - Freitag, Benjamin A1 - Linsenmann, Thomas A1 - Monoranu, Camelia M. A1 - Ernestus, Ralf-Ingo A1 - Löhr, Mario A1 - Stein, Ulrike T1 - Circulating MACC1 transcripts in glioblastoma patients predict prognosis and treatment response JF - Cancers N2 - Glioblastoma multiforme is the most aggressive primary brain tumor of adults, but lacksreliable and liquid biomarkers. We evaluated circulating plasma transcripts of metastasis-associatedin colon cancer-1 (MACC1), a prognostic biomarker for solid cancer entities, for prediction of clinicaloutcome and therapy response in glioblastomas. MACC1 transcripts were significantly higher inpatients compared to controls. Low MACC1 levels clustered together with other prognosticallyfavorable markers. It was associated with patients’ prognosis in conjunction with the isocitratedehydrogenase (IDH) mutation status: IDH1 R132H mutation and low MACC1 was most favorable(median overall survival (OS) not yet reached), IDH1 wildtype and high MACC1 was worst (medianOS 8.1 months), while IDH1 wildtype and low MACC1 was intermediate (median OS 9.1 months).No patients displayed IDH1 R132H mutation and high MACC1. Patients with low MACC1 levelsreceiving standard therapy survived longer (median OS 22.6 months) than patients with high MACC1levels (median OS 8.1 months). Patients not receiving the standard regimen showed the worstprognosis, independent of MACC1 levels (low: 6.8 months, high: 4.4 months). Addition of circulatingMACC1 transcript levels to the existing prognostic workup may improve the accuracy of outcomeprediction and help define more precise risk categories of glioblastoma patients. KW - metastasis-associated in colon cancer 1 (MACC1) KW - glioblastoma multiforme KW - liquid biopsy KW - therapy response KW - prognostic marker Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197327 SN - 2072-6694 VL - 11 IS - 6 ER - TY - JOUR A1 - Feldheim, Jonas A1 - Kessler, Almuth F. A1 - Monoranu, Camelia M. A1 - Ernestus, Ralf-Ingo A1 - Löhr, Mario A1 - Hagemann, Carsten T1 - Changes of O\(^6\)-Methylguanine DNA Methyltransferase (MGMT) promoter methylation in glioblastoma relapse—a meta-analysis type literature review JF - Cancers N2 - Methylation of the O6-methylguanine DNA methyltransferase (MGMT) promoter has emerged as strong prognostic factor in the therapy of glioblastoma multiforme. It is associated with an improved response to chemotherapy with temozolomide and longer overall survival. MGMT promoter methylation has implications for the clinical course of patients. In recent years, there have been observations of patients changing their MGMT promoter methylation from primary tumor to relapse. Still, data on this topic are scarce. Studies often consist of only few patients and provide rather contrasting results, making it hard to draw a clear conclusion on clinical implications. Here, we summarize the previous publications on this topic, add new cases of changing MGMT status in relapse and finally combine all reports of more than ten patients in a statistical analysis based on the Wilson score interval. MGMT promoter methylation changes are seen in 115 of 476 analyzed patients (24%; CI: 0.21–0.28). We discuss potential reasons like technical issues, intratumoral heterogeneity and selective pressure of therapy. The clinical implications are still ambiguous and do not yet support a change in clinical practice. However, retesting MGMT methylation might be useful for future treatment decisions and we encourage clinical studies to address this topic KW - glioblastoma multiforme (GBM) KW - glioma KW - relapse KW - temozolomide KW - MGMT promoter methylation KW - therapy KW - resistance KW - recurrence Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193040 SN - 2072-6694 VL - 11 IS - 12 ER -