TY - JOUR A1 - Schramm, Sabine A1 - Fraune, Johanna A1 - Naumann, Ronald A1 - Hernandez-Hernandez, Abrahan A1 - Höög, Christer A1 - Cooke, Howard J. A1 - Alsheimer, Manfred A1 - Benavente, Ricardo T1 - A Novel Mouse Synaptonemal Complex Protein Is Essential for Loading of Central Element Proteins, Recombination, and Fertility N2 - The synaptonemal complex (SC) is a proteinaceous, meiosis-specific structure that is highly conserved in evolution. During meiosis, the SC mediates synapsis of homologous chromosomes. It is essential for proper recombination and segregation of homologous chromosomes, and therefore for genome haploidization. Mutations in human SC genes can cause infertility. In order to gain a better understanding of the process of SC assembly in a model system that would be relevant for humans, we are investigating meiosis in mice. Here, we report on a newly identified component of the murine SC, which we named SYCE3. SYCE3 is strongly conserved among mammals and localizes to the central element (CE) of the SC. By generating a Syce3 knockout mouse, we found that SYCE3 is required for fertility in both sexes. Loss of SYCE3 blocks synapsis initiation and results in meiotic arrest. In the absence of SYCE3, initiation of meiotic recombination appears to be normal, but its progression is severely impaired resulting in complete absence of MLH1 foci, which are presumed markers of crossovers in wild-type meiocytes. In the process of SC assembly, SYCE3 is required downstream of transverse filament protein SYCP1, but upstream of the other previously described CE–specific proteins. We conclude that SYCE3 enables chromosome loading of the other CE–specific proteins, which in turn would promote synapsis between homologous chromosomes. KW - Maus KW - Genetik KW - Cytologie Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68895 ER - TY - JOUR A1 - Jahn, Daniel A1 - Schramm, Sabine A1 - Schnölzer, Martina A1 - Heilmann, Clemens J. A1 - de Koster, Chris G. A1 - Schütz, Wolfgang A1 - Benavente, Ricardo A1 - Alsheimer, Manfred T1 - A truncated lamin A in the Lmna\(^{−/−}\) mouse line: Implications for the understanding of laminopathies JF - Nucleus N2 - During recent years a number of severe clinical syndromes, collectively termed laminopathies, turned out to be caused by various, distinct mutations in the human LMNA gene. Arising from this, remarkable progress has been made to unravel the molecular pathophysiology underlying these disorders. A great benefit in this context was the generation of an A-type lamin deficient mouse line (Lmna\(^{−/−}\)) by Sullivan and others,1 which has become one of the most frequently used models in the field and provided profound insights to many different aspects of A-type lamin function. Here, we report the unexpected finding that these mice express a truncated Lmna gene product on both transcriptional and protein level. Combining different approaches including mass spectrometry, we precisely define this product as a C-terminally truncated lamin A mutant that lacks domains important for protein interactions and post-translational processing. Based on our findings we discuss implications for the interpretation of previous studies using Lmna\(^{−/−}\) mice and the concept of human laminopathies. KW - nuclear organization KW - A-type lamins KW - LMNA mutations KW - laminopathies KW - nuclear envelope KW - nuclear lamina Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127281 VL - 3 IS - 5 ER - TY - JOUR A1 - Alsheimer, Manfred A1 - Link, Jana A1 - Leubner, Monika A1 - Schmitt, Johannes A1 - Göb, Eva A1 - Benavente, Ricardo A1 - Jeang, Kuan-Teh A1 - Xu, Rener T1 - Analysis of Meiosis in SUN1 Deficient Mice Reveals a Distinct Role of SUN2 in Mammalian Meiotic LINC Complex Formation and Function N2 - LINC complexes are evolutionarily conserved nuclear envelope bridges, composed of SUN (Sad-1/UNC-84) and KASH (Klarsicht/ANC-1/Syne/homology) domain proteins. They are crucial for nuclear positioning and nuclear shape determination, and also mediate nuclear envelope (NE) attachment of meiotic telomeres, essential for driving homolog synapsis and recombination. In mice, SUN1 and SUN2 are the only SUN domain proteins expressed during meiosis, sharing their localization with meiosis-specific KASH5. Recent studies have shown that loss of SUN1 severely interferes with meiotic processes. Absence of SUN1 provokes defective telomere attachment and causes infertility. Here, we report that meiotic telomere attachment is not entirely lost in mice deficient for SUN1, but numerous telomeres are still attached to the NE through SUN2/KASH5-LINC complexes. In Sun12/2 meiocytes attached telomeres retained the capacity to form bouquetlike clusters. Furthermore, we could detect significant numbers of late meiotic recombination events in Sun12/2 mice. Together, this indicates that even in the absence of SUN1 telomere attachment and their movement within the nuclear envelope per se can be functional. Author summary: Correct genome haploidization during meiosis requires tightly regulated chromosome movements that follow a highly conserved choreography during prophase I. Errors in these movements cause subsequent meiotic defects, which typically lead to infertility. At the beginning of meiotic prophase, chromosome ends are tethered to the nuclear envelope (NE). This attachment of telomeres appears to be mediated by well-conserved membrane spanning protein complexes within the NE (LINC complexes). In mouse meiosis, the two main LINC components SUN1 and SUN2 were independently described to localize at the sites of telomere attachment. While SUN1 has been demonstrated to be critical for meiotic telomere attachment, the precise role of SUN2 in this context, however, has been discussed controversially in the field. Our current study was targeted to determine the factual capacity of SUN2 in telomere attachment and chromosome movements in SUN1 deficient mice. Remarkably, although telomere attachment is impaired in the absence of SUN1, we could find a yet undescribed SUN1-independent telomere attachment, which presumably is mediated by SUN2 and KASH5. This SUN2 mediated telomere attachment is stable throughout prophase I and functional in moving telomeres within the NE. Thus, our results clearly indicate that SUN1 and SUN2, at least partially, fulfill redundant meiotic functions. KW - telomeres KW - spermatocytes KW - Oocytes KW - meiosis KW - protein domains KW - cytoskeleton KW - synapsis KW - homologous chromosomes Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111355 ER - TY - JOUR A1 - Goméz-H, Laura A1 - Felipe-Medina, Natalia A1 - Sánchez-Martín, Manuel A1 - Davies, Owen R. A1 - Ramos, Isabel A1 - García-Tuñón, Ignacio A1 - de Rooij, Dirk G. A1 - Dereli, Ihsan A1 - Tóth, Attila A1 - Barbero, José Luis A1 - Benavente, Ricardo A1 - Llano, Elena A1 - Pendas, Alberto M. T1 - C14ORF39/SIX6OS1 is a constituent of the synaptonemal complex and is essential for mouse fertility JF - Nature Communications N2 - Meiotic recombination generates crossovers between homologous chromosomes that are essential for genome haploidization. The synaptonemal complex is a ‘zipper’-like protein assembly that synapses homologue pairs together and provides the structural framework for processing recombination sites into crossovers. Humans show individual differences in the number of crossovers generated across the genome. Recently, an anonymous gene variant in C14ORF39/SIX6OS1 was identified that influences the recombination rate in humans. Here we show that C14ORF39/SIX6OS1 encodes a component of the central element of the synaptonemal complex. Yeast two-hybrid analysis reveals that SIX6OS1 interacts with the well-established protein synaptonemal complex central element 1 (SYCE1). Mice lacking SIX6OS1 are defective in chromosome synapsis at meiotic prophase I, which provokes an arrest at the pachytene-like stage and results in infertility. In accordance with its role as a modifier of the human recombination rate, SIX6OS1 is essential for the appropriate processing of intermediate recombination nodules before crossover formation. KW - Chromosomes KW - Meiosis KW - Spermatogenesis Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165907 VL - 7 ER - TY - JOUR A1 - Göb, Eva A1 - Meyer-Natus, Elisabeth A1 - Benavente, Ricardo A1 - Alsheimer, Manfred T1 - Expression of individual mammalian Sun1 isoforms depends on the cell type N2 - Mammalian Sun1 belongs to an evolutionarily conserved family of inner nuclear membrane proteins, which are known as SUN domain proteins. SUN domain proteins interact with KASH domain partners to form bridging complexes, so-called LINC complexes, that physically connect the nuclear interior to the cytoskeleton. LINC complexes are critical for nuclear integrity and play fundamental roles in nuclear positioning, shaping and movement. The mammalian genome codes for at least five different SUN domain proteins used for the formation of a number of different LINC complexes. Recently, we reported on the identification of everal Sun1 isoforms, which tremendously enlarges the alternatives to form functional LINC complexes. We now confirmed that Sun1 actually exists in at least seven distinct splice variants. Besides that, we observed that expression of individual Sun1 isoforms remarkably depends on the cell type, suggesting a cell type-specific adaption of Sun1 dependent LINC complexes to specific cellular and physiological requirements. KW - Biologie KW - Sun1 KW - SUN domain protein KW - LINC complex KW - mouse KW - nuclear envelope KW - isoform Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68750 ER - TY - JOUR A1 - Scheer, Ulrich A1 - Benavente, Ricardo T1 - Functional and dynamic aspects of the mammalian nucleolus N2 - Nucleoli are the sites of ribosome biogenesis. Transcription of the ribosomal RNA genes as well as processing and initial packaging of their transcripts with ribosomal and non-ribosomal proteins all occur within the nucleolus in an ordered manner and under defined topological conditions. Components of the nucleolus have been localized by immunocytochemistry and their functional aspects investigated by microinjection of antibodies directed against the enzyme responsible for rDNA transcription, RNA polymerase I. The role of nascent transcripts in postmitotic formation of nucleoli will be discussed. Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-34269 ER - TY - JOUR A1 - Benavente, Ricardo A1 - Dabauvalle, Marie-Christine A1 - Scheer, Ulrich A1 - Chaly, Nathalie T1 - Functional role of newly formed pore complexes in postmitotic nuclear reorganization N2 - Many nuclear proteins are released into the cytoplasm at prometaphase and are transported back into the daughter nuclei at the end of mitosis. To determine the role of this reentry in nuclear remodelling during early interphase, we experimentally manipulated nuclear protein uptake in dividing cells. Recently we and others have shown that signal-dependent, pore complex-mediated uptake of nuclear protein is blocked in living cells on microinjection of the lectin wheat germ agglutinin (WGA), or of antibodies such as PI1 that are directed against WGA-binding pore complex glycoproteins. In the present study, we microinjected mitotic PtKz cells with WGA or antibody PIt and followed nuclear reorganization of the daughter cells by immunofluorescence and electron microscopy. The inhibitory effect on nuclear protein uptake was monitored by co-injection of the karyophilic protein nucleoplasmin. When injected by itself early in mitosis, nucleoplasmin became sequestered into the daughter nuclei as they entered telophase. In contrast, nucleoplasmin was excluded from the daughter nuclei in the presence of WGA or antibody PI1 . Although PtKz cells with blocked nuclear protein uptake completed cytokinesis, their nuclei showed a telophaselike organization characterized by highly condensed chromatin surrounded by a nuclear envelope containing a few pore complexes. These findings suggest that pore complexes become functional as early as telophase, in close coincidence with nuclear envelope reformation. They further indicate that the extensive structural rearrangement of the nucleus during the telophase-G1 transition is dependent on the influx of karyophilic proteins from the cytoplasm through the pore complexes, and is not due solely to chromosome- associated components. Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40754 ER - TY - JOUR A1 - Benavente, Ricardo A1 - Schmidt-Zachmann, Marion S. A1 - Hügle-Dörr, B. A1 - Reimer, G. A1 - Rose, K. M. A1 - Scheer, Ulrich T1 - Identification and definition of nucleolus-related fibrillar bodies in micronucleated cells N2 - Small nucleolus-related bodies which occur in the nUcleoplasm of " micronuclei" lacking nucleolar organizers have been studied by immunofluorescence microscopy. These bodies stained specifically with three different antibodies directed against proteins that are normally associated with the dense fibrillar component of functional nucleoli, but not with antibodies specific for certain proteins of the granular component or the fibrillar centers. Our data show that, in the absence of rRNA genes, the various constituent proteins characteristic of the dense fibrillar component spontaneously assemble into spherical entities but that the subsequent fusion of these bodies into larger structures is prevented in these micronuclei. The similarity between these nucleolus-related bodies of micronuclei and the prenucleolar bodies characteristic of early stages of nucleologenesis during mitotic telophase is discussed. Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-39423 ER - TY - JOUR A1 - Benavente, Ricardo A1 - Rose, Kathleen M. A1 - Reimer, Georg A1 - Hügle-Dörr, Barbara A1 - Scheer, Ulrich T1 - Inhibition of nucleolar reformation after microinjection of antibodies to RNA polymerase I into mitotic cells N2 - The formation of daughter nuclei and the reformation of nucleolar structures was studied after microinjection of antibodies to RNA polymerase I into dividing cultured cells (PtK2). The fate of several nucleolar proteins representing the three main structural subcomponents of the nucleolus was examined by immunofluorescence and electron microscopy. The results show that the RNA polymerase I antibodies do not interfere with normal mitotic progression or the early steps of nucleologenesis, i.e. , the aggregation of nucleolar material into prenucleolar bodies. However,they inhibit the telophasic coalescence of the prenucleolar bodies into the chromosomal nucleolar organizer regions, thus preventing the formation of new nucleoli. These prenucleolar bodies show a fibrillar organization that also compositionally resembles the dense fibrillar component of interphase nucleoli . We conclude that during normal nucleologenesis the dense fibrillar component forms from preformed entities around nucleolar organizer regions, and that this association seems to be dependent on the presence of an active form of RNA polymerase I. Y1 - 1987 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-33247 ER - TY - JOUR A1 - Goeb, Eva A1 - Schmitt, Johannes A1 - Benavente, Ricardo A1 - Alsheimer, Manfred T1 - Mammalian Sperm Head Formation Involves Different Polarization of Two Novel LINC Complexes N2 - Background: LINC complexes are nuclear envelope bridging protein structures formed by interaction of SUN and KASH proteins. They physically connect the nucleus with the peripheral cytoskeleton and are critically involved in a variety of dynamic processes, such as nuclear anchorage, movement and positioning and meiotic chromosome dynamics. Moreover, they are shown to be essential for maintaining nuclear shape. Findings: Based on detailed expression analysis and biochemical approaches, we show here that during mouse sperm development, a terminal cell differentiation process characterized by profound morphogenic restructuring, two novel distinctive LINC complexes are established. They consist either of spermiogenesis-specific Sun3 and Nesprin1 or Sun1g, a novel non-nuclear Sun1 isoform, and Nesprin3. We could find that these two LINC complexes specifically polarize to opposite spermatid poles likely linking to sperm-specific cytoskeletal structures. Although, as shown in co-transfection / immunoprecipitation experiments, SUN proteins appear to arbitrarily interact with various KASH partners, our study demonstrates that they actually are able to confine their binding to form distinct LINC complexes. Conclusions: Formation of the mammalian sperm head involves assembly and different polarization of two novel spermiogenesis-specific LINC complexes. Together, our findings suggest that theses LINC complexes connect the differentiating spermatid nucleus to surrounding cytoskeletal structures to enable its well-directed shaping and elongation, which in turn is a critical parameter for male fertility. KW - Sperma KW - LINC complexes Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68449 ER -