TY - JOUR A1 - Weng, Andreas M. A1 - Köstler, Herbert A1 - Bley, Thorsten A. A1 - Ritter, Christian O. T1 - Effect of short-term smoking & L-arginine on coronary endothelial function assessed by cardiac magnetic resonance cold pressor testing: a pilot study JF - BMC Cardiovascular Disorders N2 - Background The effect of smoking on coronary vasomotion has been investigated in the past with various imaging techniques in both short- and long-term smokers. Additionally, coronary vasomotion has been shown to be normalized in long-term smokers by L-Arginine acting as a substrate for NO synthase, revealing the coronary endothelium as the major site of abnormal vasomotor response. Aim of the prospective cohort study was to investigate coronary vasomotion of young healthy short-term smokers via magnetic resonance cold pressor test with and without the administration of L-Arginine and compare obtained results with the ones from nonsmokers. Methods Myocardial blood flow (MBF) was quantified with first-pass perfusion MRI on a 1.5 T scanner in healthy short-term smokers (N = 10, age: 25.0 ± 2.8 years, 5.0 ± 2.9 pack years) and nonsmokers (N = 10, age: 34.3 ± 13.6) both at rest and during cold pressor test (CPT). Smokers underwent an additional examination after administration of L-Arginine within a median of 7 days of the naïve examination. Results MBF at rest turned out to be 0.77 ± 0.30 (smokers with no L-Arginine; mean ± standard deviation), 0.66 ± 0.21 (smokers L-Arginine) and 0.84 ± 0.08 (nonsmokers). Values under CPT were 1.21 ± 0.42 (smokers no L-Arginine), 1.09 ± 0.35 (smokers L-Arginine) and 1.63 ± 0.33 (nonsmokers). In all groups, MBF was significantly increased under CPT compared to the corresponding rest examination (p < 0.05 in all cases). Additionally, MBF under CPT was significantly different between the smokers and the nonsmokers (p = 0.002). MBF at rest was significantly different between the smokers when L-Arginine was given and the nonsmokers (p = 0.035). Conclusion Short-term smokers showed a reduced response to cold both with and without the administration of L-Arginine. However, absolute MBF values under CPT were lower compared to nonsmokers independently of L-Arginine administration. KW - MRI KW - myocardial perfusion KW - cold pressor test KW - endothelium KW - L-arginine KW - smoking Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260559 VL - 21 ER - TY - JOUR A1 - Gilbert, Fabian A1 - Klein, Detlef A1 - Weng, Andreas Max A1 - Köstler, Herbert A1 - Schmitz, Benedikt A1 - Schmalzl, Jonas A1 - Böhm, Dirk T1 - Supraspinatus muscle elasticity measured with real time shear wave ultrasound elastography correlates with MRI spectroscopic measured amount of fatty degeneration JF - BMC Muscoskeletal Disorders N2 - Background: Fatty Degeneration (FD) of the rotator cuff muscles influences functional and anatomical outcome after rotator cuff repair. The MRI based estimation of fatty degeneration is the gold standard. There is some evidence that Ultrasound elastography (EUS) can detect local differences of tissue stiffness in muscles and tendons. Shear-wave elastography (SWE) was evaluated to determine the extent to which shear wave velocity was associated with measures of fatty degeneration. MRI-spectroscopic fat measurement was used as a reference to quantify the amount of fat in the muscle belly. Methods: Forty-two patients underwent SWE of the supraspinatus muscles at its thickest diameter. After ultrasound evaluation an MRI-spectroscopic fat measurement of the supraspinatus muscle was performed using the SPLASH-technique. A gel filled capsule was used to locate the measured area in the MRI. The values of shear wave velocity (SWV) measured with SWE and spectroscopic fat measurement were correlated statistically using Pearson’s correlation test. Results: Correlation of the fat amount measured with MRI-spectroscopy and the SWV measured with SWE was ρ =0.82. Spectroscopic measured fat ratio of the supraspinatus muscle ranged from 0% to 77.41% and SWV from 1.59 m/s to 5.32 m/s. In 4 patients no sufficient SWE could be performed, these individuals showed a larger diameter of the overlying soft tissue. SWV measured with SWE showed a good correlation with MRI spectroscopic fat amount of the supraspinatus muscle. Conclusion: These preliminary data suggest that SWE may be a sufficient tool in detecting and estimating the amount of fatty degeneration in the supraspinatus muscle in real time. Large overlying soft tissue may be a limitation in performing sufficient EUS. KW - shoulder surgery KW - rotator cuff KW - MRI KW - ultrasound KW - fatty degeneration Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159378 VL - 18 IS - 549 ER - TY - JOUR A1 - Gilbert, Fabian A1 - Böhm, Dirk A1 - Eden, Lars A1 - Schmalzl, Jonas A1 - Meffert, Rainer H. A1 - Köstler, Herbert A1 - Weng, Andreas M. A1 - Ziegler, Dirk T1 - Comparing the MRI-based Goutallier Classification to an experimental quantitative MR spectroscopic fat measurement of the supraspinatus muscle JF - BMC Musculoskeletal Disorders N2 - Background The Goutallier Classification is a semi quantitative classification system to determine the amount of fatty degeneration in rotator cuff muscles. Although initially proposed for axial computer tomography scans it is currently applied to magnet-resonance-imaging-scans. The role for its clinical use is controversial, as the reliability of the classification has been shown to be inconsistent. The purpose of this study was to compare the semi quantitative MRI-based Goutallier Classification applied by 5 different raters to experimental MR spectroscopic quantitative fat measurement in order to determine the correlation between this classification system and the true extent of fatty degeneration shown by spectroscopy. Methods MRI-scans of 42 patients with rotator cuff tears were examined by 5 shoulder surgeons and were graduated according to the MRI-based Goutallier Classification proposed by Fuchs et al. Additionally the fat/water ratio was measured with MR spectroscopy using the experimental SPLASH technique. The semi quantitative grading according to the Goutallier Classification was statistically correlated with the quantitative measured fat/water ratio using Spearman’s rank correlation. Results Statistical analysis of the data revealed only fair correlation of the Goutallier Classification system and the quantitative fat/water ratio with R = 0.35 (p < 0.05). By dichotomizing the scale the correlation was 0.72. The interobserver and intraobserver reliabilities were substantial with R = 0.62 and R = 0.74 (p < 0.01). Conclusion The correlation between the semi quantitative MRI based Goutallier Classification system and MR spectroscopic fat measurement is weak. As an adequate estimation of fatty degeneration based on standard MRI may not be possible, quantitative methods need to be considered in order to increase diagnostic safety and thus provide patients with ideal care in regard to the amount of fatty degeneration. Spectroscopic MR measurement may increase the accuracy of the Goutallier classification and thus improve the prediction of clinical results after rotator cuff repair. However, these techniques are currently only available in an experimental setting. KW - rotator cuff KW - MRI KW - spectroscopy KW - goutallier KW - classification KW - shoulder surgery Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147788 VL - 17 IS - 355 ER -