TY - JOUR A1 - Ouyang, Guanghui A1 - Rühe, Jessica A1 - Zhang, Yang A1 - Lin, Mei-Jin A1 - Liu, Minghua A1 - Würthner, Frank T1 - Intramolecular Energy and Solvent-Dependent Chirality Transfer within a BINOL-Perylene Hetero-Cyclophane JF - Angewandte Chemie International Edition N2 - Multichromophoric macrocycles and cyclophanes are important supramolecular architectures for the elucidation of interchromophoric interactions originating from precise spatial organization. Herein, by combining an axially chiral binaphthol bisimide (BBI) and a bay-substituted conformationally labile twisted perylene bisimide (PBI) within a cyclophane of well-defined geometry, we report a chiral PBI hetero-cyclophane (BBI-PBI) that shows intramolecular energy and solvent-regulated chirality transfer from the BBI to the PBI subunit. Excellent spectral overlap and spatial arrangement of BBI and PBI lead to efficient excitation energy transfer and subsequent PBI emission with high quantum yield (80–98 %) in various solvents. In contrast, chirality transfer is strongly dependent on the respective solvent as revealed by circular dichroism (CD) spectroscopy. The combination of energy and chirality transfer affords a bright red circularly polarized luminescence (CPL) from the PBI chromophore by excitation of BBI. KW - chirality transfer KW - solvent effects KW - perylene bisimide KW - energy transfer KW - cyclophanes Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318818 VL - 61 IS - 31 ER - TY - JOUR A1 - Liu, Bin A1 - Vonhausen, Yvonne A1 - Schulz, Alexander A1 - Höbartner, Claudia A1 - Würthner, Frank T1 - Peptide Backbone Directed Self-Assembly of Merocyanine Oligomers into Duplex Structures JF - Angewandte Chemie International Edition N2 - The pseudopeptide backbone provided by N-(2-aminoethyl)-glycine oligomers with attached nucleobases has been widely utilized in peptide nucleic acids (PNAs) as DNA mimics. Here we demonstrate the suitability of this backbone for the formation of structurally defined dye stacks. Toward this goal a series of peptide merocyanine (PMC) dye oligomers connected to a N-(2-aminoethyl)-glycine backbone were prepared through peptide synthesis. Our concentration-, temperature- and solvent-dependent UV/Vis absorption studies show that under the control of dipole–dipole interactions, smaller-sized oligomers consisting of one, two or three dyes self-assemble into defined duplex structures containing two up to six chromophores. In contrast, upon further extension of the oligomer, the chosen peptide backbone cannot direct the formation of a defined duplex architecture anymore due to intramolecular aggregation between the dyes. For all aggregate species a moderate aggregation-induced emission enhancement is observed. KW - dipole-dipole interaction KW - peptide backbone KW - merocyanine KW - dye assembly KW - duplex structure Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318797 VL - 61 IS - 21 ER - TY - JOUR A1 - Hong, Yongseok A1 - Kim, Woojae A1 - Kim, Taeyeon A1 - Kaufmann, Christina A1 - Kim, Hyungjun A1 - Würthner, Frank A1 - Kim, Dongho T1 - Real-time Observation of Structural Dynamics Triggering Excimer Formation in a Perylene Bisimide Folda-dimer by Ultrafast Time-Domain Raman Spectroscopy JF - Angewandte Chemie International Edition N2 - In π-conjugated organic photovoltaic materials, an excimer state has been generally regarded as a trap state which hinders efficient excitation energy transport. But despite wide investigations of the excimer for overcoming the undesirable energy loss, the understanding of the relationship between the structure of the excimer in stacked organic compounds and its properties remains elusive. Here, we present the landscape of structural dynamics from the excimer formation to its relaxation in a co-facially stacked archetypical perylene bisimide folda-dimer using ultrafast time-domain Raman spectroscopy. We directly captured vibrational snapshots illustrating the ultrafast structural evolution triggering the excimer formation along the interchromophore coordinate on the complex excited-state potential surfaces and following evolution into a relaxed excimer state. Not only does this work showcase the ultrafast structural dynamics necessary for the excimer formation and control of excimer characteristics but also provides important criteria for designing the π-conjugated organic molecules. KW - excimer KW - vibrational coherence KW - time-resolved impulsive stimulated raman spectroscopy KW - structural dynamics KW - perylene bisimide Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318788 VL - 61 IS - 13 ER - TY - JOUR A1 - Mützel, Carina A1 - Farrell, Jeffrey M. A1 - Shoyama, Kazutaka A1 - Würthner, Frank T1 - 12b,24b-Diborahexabenzo[a,c,fg,l,n,qr]pentacene: A Low-LUMO Boron-Doped Polycyclic Aromatic Hydrocarbon JF - Angewandte Chemie International Edition N2 - Herein we devise and execute a new synthesis of a pristine boron-doped nanographene. Our target boron-doped nanographene was designed based on DFT calculations to possess a low LUMO energy level and a narrow band gap derived from its precise geometry and B-doping arrangement. Our synthesis of this target, a doubly B-doped hexabenzopentacene (B\(_{2}\)-HBP), employs six net C−H borylations of an alkene, comprising consecutive hydroboration/electrophilic borylation/dehydrogenation and BBr\(_{3}\)/AlCl\(_{3}\)/2,6-dichloropyridine-mediated C−H borylation steps. As predicted by our calculations, B\(_{2}\)-HBP absorbs strongly in the visible region and emits in the NIR up to 1150 nm in o-dichlorobenzene solutions. Furthermore, B\(_{2}\)-HBP possesses a very low LUMO level, showing two reversible reductions at −1.00 V and −1.17 V vs. Fc\(^{+}\)/Fc. Our methodology is surprisingly selective despite its implementation of unfunctionalized precursors and offers a new approach to the synthesis of pristine B-doped polycyclic aromatic hydrocarbons. KW - aromaticity KW - polycycles KW - pentacene KW - near infrared emitter KW - boron Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318808 VL - 61 IS - 8 ER - TY - JOUR A1 - Wu, Zhu A1 - Dinkelbach, Fabian A1 - Kerner, Florian A1 - Friedrich, Alexandra A1 - Ji, Lei A1 - Stepanenko, Vladimir A1 - Würthner, Frank A1 - Marian, Christel M. A1 - Marder, Todd B. T1 - Aggregation-Induced Dual Phosphorescence from (o-Bromophenyl)-Bis(2,6-Dimethylphenyl)Borane at Room Temperature JF - Chemistry—A European Journal N2 - Designing highly efficient purely organic phosphors at room temperature remains a challenge because of fast non-radiative processes and slow intersystem crossing (ISC) rates. The majority of them emit only single component phosphorescence. Herein, we have prepared 3 isomers (o, m, p-bromophenyl)-bis(2,6-dimethylphenyl)boranes. Among the 3 isomers (o-, m- and p-BrTAB) synthesized, the ortho-one is the only one which shows dual phosphorescence, with a short lifetime of 0.8 ms and a long lifetime of 234 ms in the crystalline state at room temperature. Based on theoretical calculations and crystal structure analysis of o-BrTAB, the short lifetime component is ascribed to the T\(^M_1\) state of the monomer which emits the higher energy phosphorescence. The long-lived, lower energy phosphorescence emission is attributed to the T\(^A_1\) state of an aggregate, with multiple intermolecular interactions existing in crystalline o-BrTAB inhibiting nonradiative decay and stabilizing the triplet states efficiently. KW - AIE KW - luminescence KW - phosphorescence KW - triarylborane KW - triplet Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318297 VL - 28 IS - 30 ER - TY - JOUR A1 - Wu, Zhu A1 - Roldao, Juan Carlos A1 - Rauch, Florian A1 - Friedrich, Alexandra A1 - Ferger, Matthias A1 - Würthner, Frank A1 - Gierschner, Johannes A1 - Marder, Todd B. T1 - Pure Boric Acid Does Not Show Room-Temperature Phosphorescence (RTP) JF - Angewandte Chemie N2 - Boric acid (BA) has been used as a transparent glass matrix for optical materials for over 100 years. However, recently, apparent room-temperature phosphorescence (RTP) from BA (crystalline and powder states) was reported (Zheng et al., Angew. Chem. Int. Ed. 2021, 60, 9500) when irradiated at 280 nm under ambient conditions. We suspected that RTP from their BA sample was induced by an unidentified impurity. Our experimental results show that pure BA synthesized from B(OMe)\(_{3}\) does not luminesce in the solid state when irradiated at 250–400 nm, while commercial BA indeed (faintly) luminesces. Our theoretical calculations show that neither individual BA molecules nor aggregates would absorb light at >175 nm, and we observe no absorption of solid pure BA experimentally at >200 nm. Therefore, it is not possible for pure BA to be excited at >250 nm even in the solid state. Thus, pure BA does not display RTP, whereas trace impurities can induce RTP. KW - boric acid KW - room-temperature phosphorescence (RTP) KW - optical materials Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318308 VL - 61 IS - 15 ER - TY - JOUR A1 - Sun, Meng‐Jia A1 - Anhalt, Olga A1 - Sárosi, Menyhárt B. A1 - Stolte, Matthias A1 - Würthner, Frank T1 - Activating Organic Phosphorescence via Heavy Metal–π Interaction Induced Intersystem Crossing JF - Advanced Materials N2 - Heavy‐atom‐containing clusters, nanocrystals, and other semiconductors can sensitize the triplet states of their surface‐bonded chromophores, but the energy loss, such as nonradiative deactivation, often prevents the synergistic light emission in their solid‐state coassemblies. Cocrystallization allows new combinations of molecules with complementary properties for achieving functionalities not available in single components. Here, the cocrystal formation that employs platinum(II) acetylacetonate (Pt(acac)\(_{2}\)) as a triplet sensitizer and electron‐deficient 1,4,5,8‐naphthalene diimides (NDIs) as organic phosphors is reported. The hybrid cocrystals exhibit room‐temperature phosphorescence confined in the low‐lying, long‐lived triplet state of NDIs with photoluminescence (PL) quantum yield (Φ\(_{PL}\)) exceeding 25% and a phosphorescence lifetime (τ\(_{Ph}\)) of 156 µs. This remarkable PL property benefits from the noncovalent electronic and spin–orbital coupling between the constituents. KW - cocrystallization KW - naphthalene diimide KW - phosphorescence KW - platinum complexes KW - triplet sensitization Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312248 VL - 34 IS - 51 ER - TY - JOUR A1 - Menekse, Kaan A1 - Mahl, Magnus A1 - Albert, Julius A1 - Niyas, M. A. A1 - Shoyama, Kazutaka A1 - Stolte, Matthias A1 - Würthner, Frank T1 - Supramolecularly Engineered Bulk‐Heterojunction Solar Cells with Self‐Assembled Non‐Fullerene Nanographene Tetraimide Acceptors JF - Solar RRL N2 - A series of novel imide‐functionalized C\(_{64}\) nanographenes is investigated as acceptor components in organic solar cells (OSCs) in combination with donor polymer PM6. These electron‐poor molecules either prevail as a monomer or self‐assemble into dimers in the OSC active layer depending on the chosen imide substituents. This allows for the controlled stacking of electron‐poor and electron‐rich π–scaffolds to establish a novel class of non‐fullerene acceptor materials to tailor the bulk‐heterojunction morphology of the OSCs. The best performance is observed for derivatives that are able to self‐assemble into dimers, reaching power conversion efficiencies of up to 7.1%. KW - nanographene KW - non-fullerene acceptors KW - organic solar cells KW - polycyclic aromatic hydrocarbons KW - self-assembly Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312099 VL - 7 IS - 2 ER - TY - JOUR A1 - Schnitzlein, Matthias A1 - Zhu, Chongwei A1 - Shoyama, Kazutaka A1 - Würthner, Frank T1 - π‐Extended Pleiadienes by [5+2] Annulation of 1‐Boraphenalenes and ortho‐Dihaloarenes JF - Chemistry – A European Journal N2 - Palladium‐catalyzed [5+2] annulation of 1‐boraphenalenes with ortho‐dihaloarenes afforded negatively curved π‐extended pleiadienes. Two benzo[1,2‐i:4,5‐i’]dipleiadienes (BDPs) featuring a seven‐six‐seven‐membered ring arrangement were synthesized and investigated. Their crystal structure revealed a unique packing arrangement and theoretical calculations were employed to shed light onto the dynamic behavior of the BDP moiety and its aromaticity. Further, a naphthalene‐fused pleiadiene was stitched together by oxidative cyclodehydrogenation to yield an additional five‐membered ring. This formal azulene moiety led to distinct changes in optical and redox properties and increased perturbation of the aromatic system. KW - annulation KW - aromaticity KW - azulene KW - cyclodehydrogenation KW - polycyclic aromatic hydrocarbons Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293919 VL - 28 IS - 61 ER - TY - JOUR A1 - Noll, Niklas A1 - Groß, Tobias A1 - Shoyama, Kazutaka A1 - Beuerle, Florian A1 - Würthner, Frank T1 - Folding‐Induced Promotion of Proton‐Coupled Electron Transfers via Proximal Base for Light‐Driven Water Oxidation JF - Angewandte Chemie International Edition N2 - Proton‐coupled electron‐transfer (PCET) processes play a key role in biocatalytic energy conversion and storage, for example, photosynthesis or nitrogen fixation. Here, we report a series of bipyridine‐containing di‐ to tetranuclear Ru(bda) macrocycles 2 C–4 C (bda: 2,2′‐bipyridine‐6,6′‐dicarboxylate) to promote O−O bond formation. In photocatalytic water oxidation under neutral conditions, all complexes 2 C–4 C prevail in a folded conformation that support the water nucleophilic attack (WNA) pathway with remarkable turnover frequencies of up to 15.5 s\(^{−1}\) per Ru unit respectively. Single‐crystal X‐ray analysis revealed an increased tendency for intramolecular π‐π stacking and preorganization of the proximal bases close to the active centers for the larger macrocycles. H/D kinetic isotope effect studies and electrochemical data demonstrate the key role of the proximal bipyridines as proton acceptors in lowering the activation barrier for the crucial nucleophilic attack of H\(_{2}\)O in the WNA mechanism. KW - artificial photosynthesis KW - folded macrocyles KW - homogeneous catalysis KW - photocatalysis KW - Ruthenium complexes Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312020 VL - 62 IS - 7 ER -