TY - JOUR A1 - Kaltdorf, Martin A1 - Srivastava, Mugdha A1 - Gupta, Shishir K. A1 - Liang, Chunguang A1 - Binder, Jasmin A1 - Dietl, Anna-Maria A1 - Meir, Zohar A1 - Haas, Hubertus A1 - Osherov, Nir A1 - Krappmann, Sven A1 - Dandekar, Thomas T1 - Systematic Identification of Anti-Fungal Drug Targets by a Metabolic Network Approach JF - Frontiers in Molecular Bioscience N2 - New antimycotic drugs are challenging to find, as potential target proteins may have close human orthologs. We here focus on identifying metabolic targets that are critical for fungal growth and have minimal similarity to targets among human proteins. We compare and combine here: (I) direct metabolic network modeling using elementary mode analysis and flux estimates approximations using expression data, (II) targeting metabolic genes by transcriptome analysis of condition-specific highly expressed enzymes, and (III) analysis of enzyme structure, enzyme interconnectedness (“hubs”), and identification of pathogen-specific enzymes using orthology relations. We have identified 64 targets including metabolic enzymes involved in vitamin synthesis, lipid, and amino acid biosynthesis including 18 targets validated from the literature, two validated and five currently examined in own genetic experiments, and 38 further promising novel target proteins which are non-orthologous to human proteins, involved in metabolism and are highly ranked drug targets from these pipelines. KW - metabolism KW - targets KW - antimycotics KW - modeling KW - structure KW - interaction KW - fungicide Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147396 VL - 3 ER - TY - JOUR A1 - Chopra, Martin A1 - Biehl, Marlene A1 - Steinfatt, Tim A1 - Brandl, Andreas A1 - Kums, Juliane A1 - Amich, Jorge A1 - Vaeth, Martin A1 - Kuen, Janina A1 - Holtappels, Rafaela A1 - Podlech, Jürgen A1 - Mottok, Anja A1 - Kraus, Sabrina A1 - Jordán-Garotte, Ana-Laura A1 - Bäuerlein, Carina A. A1 - Brede, Christian A1 - Ribechini, Eliana A1 - Fick, Andrea A1 - Seher, Axel A1 - Polz, Johannes A1 - Ottmueller, Katja J. A1 - Baker, Jeannette A1 - Nishikii, Hidekazu A1 - Ritz, Miriam A1 - Mattenheimer, Katharina A1 - Schwinn, Stefanie A1 - Winter, Thorsten A1 - Schäfer, Viktoria A1 - Krappmann, Sven A1 - Einsele, Hermann A1 - Müller, Thomas D. A1 - Reddehase, Matthias J. A1 - Lutz, Manfred B. A1 - Männel, Daniela N. A1 - Berberich-Siebelt, Friederike A1 - Wajant, Harald A1 - Beilhack, Andreas T1 - Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion JF - Journal of Experimental Medicine N2 - Donor CD4\(^+\)Foxp3\(^+\) regulatory T cells (T reg cells) suppress graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (HCT allo-HCT]). Current clinical study protocols rely on the ex vivo expansion of donor T reg cells and their infusion in high numbers. In this study, we present a novel strategy for inhibiting GvHD that is based on the in vivo expansion of recipient T reg cells before allo-HCT, exploiting the crucial role of tumor necrosis factor receptor 2 (TNFR2) in T reg cell biology. Expanding radiation-resistant host T reg cells in recipient mice using a mouse TNFR2-selective agonist before allo-HCT significantly prolonged survival and reduced GvHD severity in a TNFR2-and T reg cell-dependent manner. The beneficial effects of transplanted T cells against leukemia cells and infectious pathogens remained unaffected. A corresponding human TNFR2-specific agonist expanded human T reg cells in vitro. These observations indicate the potential of our strategy to protect allo-HCT patients from acute GvHD by expanding T reg cells via selective TNFR2 activation in vivo. KW - Tumor-necrosis-factor KW - Regulatory-cells KW - Bone marrow transplantantation KW - Graft-versus-leukemia KW - Rheumatoid arthritis KW - Autoimmune diseases KW - Factor receptor KW - Alpha therapy KW - Expression KW - Suppression Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187640 VL - 213 IS - 9 ER -