TY - THES A1 - Faber, Johan Henrik T1 - Naphthylisoquinoline Alkaloids : Structural Elucidation, Metabolism and Functional Analysis of their Bioactivities T1 - Naphthylisochinolinalkaloide: Strukturaufklärung, Metabolismus und Untersuchungen zu Wirkmechanismen N2 - This thesis deals with the isolation and structural elucidation of bioactive naphthylisoquinoline alkaloids and related analogs. The mode of action of the antiplasmodial activity exhibited by the naphthylisoquinoline alkaloids was explored and compared to that of the antimalarial drug chloroquine. Furthermore, the phase 1 and 2 metabolism of dioncophyllines A and C and dioncopeltine A were investigated. In detail the following results have been obtained: • From the leaves of the recently discovered East African liana A. tanzaniensis six naphthylisoquinoline alkaloids were isolated. • The leaves of a botanical yet undescribed Ancistrocladus species, collected by Prof. Dr. V. Mudogo in the Democratic Republic of Congo in the habitat Yeteto near the town Ikela, were analyzed for naphthylisoquinoline alkaloids for the first time. The isolation work led to the first identification of an N,C-coupled naphthyldihydroisoquinoline alkaloid; ancistrocladinium B. Phytochemical investigation of the roots of the Congolese Ancistrocladus species (habitat Yeteto), , afforded five new derivatives of known naphthylisoquinoline alkaloids, namely 5'-O-demethylhamatine, 5'-O-demethylhamatinine, 6-O-demethylancistroealaine A, 6,5'-O,O-didemethylancistroealaine A, and 5-epi-6-O-methylancistrobertsonine A, along with six known naphthylisoquinoline alkaloids. • The antiplasmodial activity guided purification of 60Co irradiated samples containing commercially available naphthylisoquinoline related substances, afforded the isolation of the irradiation products 3,4-dihydro-1-isoquinolinone, 3,4-dihydro-1-isoquinolineamine, and 1,2,3,4-tetrahydro-1,2-diazirino-isoquinoline. The compounds were found to be more active than the starting material, although only exhibiting weak antiplasmodial activity against P. falciparum. • The effect on the absorption spectrum of FPIX due to complex formation with the naphthylisoquinoline alkaloids dioncophyllines A and C, dioncopeltine A korupensamine A, and ancistrocladine was examined by a titration study. Job's plot analyses by UV-spectroscopy determined the stoichiometry for the complex formation of FPIX and naphthylisoquinoline alkaloids to be 2:1. Furthermore, the dissociation constants for the complexation with FPIX were determined for each of the naphthylisoquinoline alkaloids investigated. Dioncophylline C and dioncopeltine A were found to possess dissociation constants, which are comparable to the one reported for the antimalarial drug chloroquine. The ability of ESI to transfer noncovalent solution-phase assemblies intact into the gas phase, was conducted on solution mixtures of naphthylisoquinoline alkaloid and FPIX, as well as on mixtures of chloroquine and FPIX. The mass spectrometry analyses revealed several peaks, which corresponded to the complex formation of FPIX to the respective ligands investigated. The most interesting results obtained were the detection of peaks corresponding to the complex formation between a chelated dimer of FPIX and dioncophylline Cand of peaks corresponding to a double protonated tetramer of FPIX – consisting of two chelated -oxo dimers of FPIX – in complex formation with two molecules of chloroquine. • Two phase 1 metabolism products of dioncophylline A were identified. Coelution in combination with HPLC-MS/MS, NMR, and CD investigations assigned the major metabolic product as 5'-O-demethyldioncophylline A. The minor metabolic product was only present in small amounts, which disabled an unambiguous structural characterization of the compound. However, as deduced from the mass spectrometry analyses and exclusion of a possible metabolic oxidation product by coelution with authentic reference material, the metabolite should possess a 4-hydroxylated isoquinoline portion and is assumed to be represented by structure. Dioncophylline C and dioncopeltine A were found to be stable to phase 1 metabolism reactions caused by rat liver microsomes. N2 - • Aus Blättern der ostafrikanischen Lianenart Ancistrocladus tanzaniensis wurden sechs Naphthylischinolin-Alkaloide isoliert, darunter Ancistrotectorilin die bereits aus A. tectorius isoliert wurde. Von einer botanisch bisher unbeschriebenen Ancistrocladus Art, gesammelt von Prof. Dr. V. Mudogo in der Demokratischen Republik Kongo bei Yeteto, in der Nähe der Stadt Ikela, wurden die Blätter i auf ihren Inhalt an Naphthylischinolin-Alkloiden phytochemisch untersucht. Dabei konnte das erste N,C gekuppelte Naphthyldihydroisochinolin-Alkaloid, Ancistrocladinium B. • Die phytochemische Untersuchung der Wurzeln der Kongolesischen Ancistrocladus Art (Fundort Yeteto) wurde ausgeführt und ergab die Isolierung von fünf unbekannten Derivaten bereits bekannter Naphthylisochinolin-Alkaloide: 5'-O-Demethylhamatin , 5'-O-Demethylhamatinin, 6-O-Demethylancistroealain A, 6,5'-O,O-Didemethylancistroealain A und 5-epi-6-O-Methylancistrobertsonine A. Parallel dazu wurden sechs bereits bekannte Naphthylisochinolin-Alkaloide identifiziert. Die bioaktivitätsgeleitete Reinigung antiplasmodialer 60Co bestrahlter Proben –kommerziel verfügbarer Naphthylisochinolin abgeleiteter Substanzen – führte zur Isolierung verschiedener Bestrahlungs-Produkte, nämlich 3,4-Dihydro-1-Isochinolinon, 3,4-Dihydro-1-isochinolineamin, und 1,2,3,4-Tetrahydro-1,2-Diazirino-Isochinolin. Die isolierten Substanzen waren jeweils aktiver als die Edukte, zeigten aber trotzdem nur antiplasmodiale Wirksamkeit im mittleren Berreich. • Die Auswirkung der Komplexbildung unterschiedlicher Naphthylisochinolin-Alkloide – Dioncophylline A und C, Dioncopeltin A, Korupensamin A, und Ancistrocladin – auf das Absorptions-Spektrum von FPIX wurde mittels eines Titrationsexperimentes, unter Anwendung von UV Spektroskopie, untersucht. Durch Job's Plot Analysen konnte so die Stöchiometrie der Komplex-Bildung zwischen FPIX und Naphthylisochinolin-Alkaloide zu 2:1 bestimmt werden. Weiterhin konnten die einzelnen Dissoziationskonstanten für die Komplexierung von FPIX mit den untersuchten Naphthylisochinolin-Alkaloiden errechnet werden. Die für Dioncophyllin C und Dioncopeltin A bestimmten Dissoziationskonstanten sind mit der in der Literatur für das antimalariale Arzneitmittel Chloroquine vergleichbar. Die Möglichkeit durch ESI nicht kovalent gelöste Komponenten intakt in die Gas-Phase zu transferieren, wurden auf Lösungs-Gemische von Naphthylischinolin-Alkaloiden und FPIX sowie auf Lösungs-Gemische von Chloroquine und FPIX angewandt. Die massenspektroskopischen Analysen ergaben mehrere Peaks, die der Komplex-Bildung von FPIX mit den einzeln untersuchten Liganden entsprachen. Die interessantesten Ergebnisse waren dabei die Entdeckung von Peaks, die die Komplex-Bildung zwischen einem chelatisierten Dimer von FPIX mit Dioncophyllin C, sowie zwischen einem doppelt protonierten Tetramer von FPIX – bestehend aus zwei chelatisierten -oxo Dimeren von FPIX – mit zwei Molkülen Chloroquine entsprachen. Zwei Phase 1 Metabolite von Dioncophyllin A konnten in Kooperation mit M. Sieber identifiziert werden. Die Struktur des Haupt-Metabolismus-Produktes konnte durch Koelution, HPLC-MS/MS, NMR und CD Untersuchungen als 5'-O-demethyldioncophyllin A bestätigt werden. KW - Naphthylisochinolinalkaloide KW - Strukturaufklärung KW - Naturstoffe KW - Naphthylisochinoline KW - Metabolismus KW - Strukturaufklärung KW - Wirkmechanismus KW - Natural products KW - naphthylisoquinoline alkaloids KW - metabolism KW - structural elucidation KW - mode of action Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-22789 ER - TY - THES A1 - Sturm, Christian T1 - Theoretical Investigation of the Geometrical Arrangements of alpha-alanyl-peptide Nucleic Acid Hexamer Dimers and the Underlying Interstrand Binding Motifs T1 - Theoretische Untersuchungen der geometrischen Anordnung der alpha-Alanyl-Peptid-Nukleinsäure-Hexamer-Dimere und deren Interstrang-Bindungsmotive N2 - Die Funktionalitäten der DNA oder RNA werden hauptsächlich durch die verschiedenen Wechselwirkungen der paarenden Nucleinbasen bestimmt. Um die komplexen Zusammenhänge dieser verschiedenen Wechselwirkungen zu verstehen, werden Modellsysteme benötigt, die weniger Restriktionen durch das Rückgrat besitzen. Ein Beispiel für solche Systeme sind Peptidnucleinsäuren (PNA), in denen das Zuckerphosphatrückgrat der DNA oder RNA durch ein Peptidrückgrat ersetzt wird. Diederichsen et al. gelang es, eine große Anzahl solcher Systeme mit einen alpha-Alanyl-Rückgrat zu synthetisieren, an das kanonische und nicht-kanonische Nucleinsäuren gebunden sind. Diese Systeme aggregieren in verschiedenen Bindungsmotiven, die nicht in der DNA oder RNA auftauchen. Diese ungewöhnlichen Paarungsmotive könnten einen tiefen Einblick in das Zusammenspiel der Wechselwirkungen der Nucleinbasen geben, aber die geringen Löslichkeit der alpha-Alanyl-PNA Oligomere verhinderte eine experimentelle Charakterisierung der geometrischen Anordnung durch Röntgenstruktur- oder NMR-Experimente. Lediglich die absolute Stabilität der verschiedenen Aggregate konnte durch Messungen der Schmelztemperatur mit Hilfe der UV-Spektroskopie bestimmt werden. Da die Kenntnis der geometrischen Strukturen sowie der ausgebildeten Bindungsmotive wichtig ist, um einen Einblick in das Zusammenspiel der einzelnen Wechselwirkungen zu erlangen, besteht das Ziel der vorliegenden Arbeit darin, solche Informationen mit der Hilfe von theoretischen Methoden zu erlangen. Zusätzlich sind Effekte von Interesse, aus denen sich Trends bezüglich der Stabilität bestimmen lassen. Solche Untersuchungen sind einfacher zu realisieren als die Berechnung der absoluten Stabilitäten, da viele Beiträge zur absoluten Energie für ähnliche Systeme (entropische und dynamische Effekte) in etwa gleich groß sind. Somit sind diese entropischen und dynamischen Effekte für das Ziel dieser Arbeit weniger wichtig. Zur Untersuchung der Bindungseigenschaften und der Stabilitäten von alpha-Alanyl-PNA Oligomeren war es notwendig, bis dato nicht parametrisierte Nucleinbasen in den Parametersatz des Amber4.1 Kraftfelds zu integrieren. Die fehlenden Ladungen wurden durch Berechungen mit dem R.E.D-Programm-Paket ermittelt. Das Programm bestimmt aus dem elektrostatischen Potential einer optimierten Struktur die atomzentrierten Ladungen. Die fehlenden Bindungsparameter wurden der Literatur entnommen. Die Untersuchungen der einzelnen Dimere begannen jeweils mit der Konstruktion der alpha-Alanyl-PNAs für alle möglichen Paarungsmodi. Es konnte gezeigt werden, dass bestimmte Paarungsmodi aufgrund der geometrischen Gegebenheiten der Dimere und des Rückgrats nicht realisierbar waren. Für andere Dimere war ein Aufbau der alpha-Alanyl-PNA-Dimere zwar möglich, jedoch zerfielen die Dimere wieder während einer ersten Geometrieoptimierung aufgrund der hohen Spannung im Rückgrat. Die stabilen Systeme wurden zunächst in verschiedenen Molekulardynamik-(MD)-Läufen simuliert. Informationen über die Geometrie bei T=0 K wurden durch Geometrieoptimierungen erhalten, die an verschieden Punkten der MD Läufe gestartet wurden. Die resultierenden Geometrien aus den verschiedenen Anfangspunkten waren identisch. Für die geometrieoptimierten Strukturen wurden für das T=0 K Modell die Wechselwirkungsenergien zwischen den Nucleinbasen und der Einfluss der Rückgrats auf die Stabilität der Dimer in zwei separaten Schritten bestimmt. Im ersten Schritt wurde das Rückgrat entfernt und die Schnittstellen mit Methylgruppen abgesättigt. Die Wechselwirkungsenergie zwischen den Nucleinbasen wurde durch die Differenz der Energien des gesamten Systems und der Summe der Energien der einzelnen Nucleinbasen in der Geometrie des Dimers bestimmt. Aufgrund der durchgeführten Untersuchungen und die sich daraus ergebenen Korrelation der berechneten Stabilisierungsenergien mit der Schmelztemperatur konnte gezeigt werden, dass mit der vorgeschlagenen Methode eine verlässliche Beschreibung der PNA Systeme möglich ist. Für eine weitere Verbesserung des vorgestellten Modells bedarf es zusätzliche Röntgenstruktur- oder NMR-Experimente, die zur Strukturaufklärung der alpha-Alanyl-PNA Dimere entscheidend beitragen. Weitere detaillierte Daten über die Enthalpiebeiträge zur absoluten Energie der verschiedenen Komplexe wären sehr hilfreich, um die vorgestellte Methode zu bestätigen und zu verbessern. Diese Informationen könnten zum einen durch die Auswertung der Form der Schmelzkurve sowie durch Mikrokalorimetrie erhalten werden. Für den Fall, dass die Vorhersagen durch die experimentellen Befunde bestätigt würden, könnte der Ansatz auf verwandte Systeme wie zum Beispiel beta-Alanyl-PNA, DNA oder RNA angewandt werden. Durch diese weiteren Informationen könnte unser Ansatz zusätzlich durch die Berücksichtigung von dynamischen und/oder entropischen Effekte erweitert werden. N2 - The functionalities of DNA and RNA are mainly determined by the various interactions between the pairing nucleobases. To understand the complex interplay of the various interactions model systems are needed in which the interstrand pairing is less restricted by the backbone. Such systems are peptide nucleo acids (PNA) in which the sugar phosphate backbone of DNA or RNA is replaced by a peptide backbone. Diederichsen et al. were able to synthesize a large number of systems with an alpha-alanyl backbone to which canonical and non-canonical nucleobases were attached (alpha-alanyl-PNA). These systems formed aggregates with various binding motifs which do not appear in DNA or RNA. Especially the unusual binding motifs would allow a deep insight into the complex interplay of the interactions between nucleobases but the small solubility of alpha-alanyl PNA oligomers hampers the experimental determination of the geometrical arrangement by X-Ray or NMR. Only the overall stability of the various aggregates could be determined by measurements of melting temperatures via UV spectroscopy. Since a detailed knowledge about the geometrical structure and bonding motifs are necessary to obtain insight into the interplay of the various interactions it is the goal of the present work to achieve such information with the help of theoretical approaches. Additionally we are interested in the effects which govern the trends in the stabilities of the systems. This task should be simpler than an investigation of the absolute stabilities since many contributions (e.g. entropic and dynamic effects) can be expected to be similar for similar systems. Consequently, such effects are less important for our goal. For the investigation of all experimentally tested alpha-alanyl-PNA oligomers it was essential to parameterize the noncanonical nucleobases since they were not implemented in the standard version of the Amber4.1 force field. This was achieved by adding the missing parameters to the Amber Force Field. The charges of each nucleobase were determined by the R.E.D program package. The investigation started with the construction of all possible pairing modes for alpha-alanyl-PNA dimer. It could be observed that certain pairing modes were not realizable due to the geometrical arrangement of the dimer and the restriction of the backbone. For other pairing modes a construction was possible, but due to the geometrical restrictions of the backbone the strain in the system is so high that they fall apart during a first geometry optimization. Stable systems were then simulated by various molecular dynamics (MD)-runs. Information about their geometrical arrangements for T=0 K were obtained from geometry optimizations which were started from various points of the MD-run. The resulting geometries were found to be virtually identical. Information about the interactions within a dimer at T=0 K were obtained from a two step procedure in which the effects connected with the nucleobases and the influence of the backbone are determined separately. It was performed for the optimized geometries. In a first step the backbone was removed and the resulting dangling bonds were saturated by methyl groups. The total interaction energy between the nucleobases can now be estimated by the difference between the energy of the complete system and the sum of the energies of the single nucleobases computed at the geometries they take in the whole system. According to the carried out investigation and the resulting correlation of the melting temperature with the calculated stabilization energies the presented method seems to represent a reliable tool for the description of the PNA systems. Despite this success additional experimental verifications of our method are necessary to ensure its applicability. Such verifications could be based on geometrical information obtained via X-Ray or NMR investigations. More detailed data about entropic an enthalpic contribution to the stability of the various complexes would also be very helpful to verify and improve our approach. Such information could be either obtained from a careful analysis of shape of the melting temperature curve or from microcalorimetric investigations. If such tests confirm our predictions the approach could be extended and applied to neighboring fields as for examples beta-alanyl-PNA, DNA or RNA systems with unusual nucleobases. Such information is also necessary to extend our approach in a way that dynamic and/or entropic effects are also taken into account. KW - Peptid-Nucleinsäuren KW - Räumliche Anordnung KW - Wasserstoffbrückenbindung KW - PNA KW - Wasserstoffbrückenbindung KW - Stacking KW - Nukleinsäure KW - Kraftfeld KW - PNA KW - Hydrogen bond KW - Stacking KW - nucleic acid KW - force field Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20363 ER - TY - THES A1 - Chen, Zhijian T1 - pi-Stacks Based on Self-Assembled Perylene Bisimides : Structural, Optical, and Electronic Properties T1 - pi-Stapel von selbstaggregierten Perylenbisimiden : Strukturelle, Optische und Electronische Eigenschaften N2 - As a traditional industrial pigment, perylene bisimide (PBI) dyes have found wide-spread applications. In addition, PBI dyes have been considered as versatile and promising functional materials for organic-based electronic and optic devices, such as transistors and solar cells. For these novel demands, the control of self-organization of this type of dye and the investigation of the relationship between the supramolecular structure and the relevant optical and electronic properties is of great importance. The objective of this thesis focuses on gaining a better understanding of structural and functional properties of pi-stacks based on self-assembling PBIs. Studies include the synthesis and characterization of new functional PBI dyes, their aggregation in solution, in liquid crystalline state and on surfaces, and their fluorescence and charge transport properties. An overview of the formation, thermodynamics and structures of pi-stacks of functional pi- conjugated molecules in solution and in liquid crystalline phases is given in Chapter 2. Chapters 3 and 4 deal with the pi-pi aggregates of new, highly fluorescent PBIs without core-substituents. In Chapter 3, the self-assembly of a PBI with tridodecylphenyl substituents at imide N atoms both in solution and condensed phase has been studied in great detail. In condensed state, the dye exhibits a hexagonal columnar liquid crystalline (LC) phase as confirmed by DSC, OPM and X-ray diffraction analysis. The columnar stacking of this dye has been further confirmed by atomic force microscopy (AFM) where single columns could be well resolved The charge transport properties this dye have been investigated by pulse radiolysis-time resolved microwave conductivity (PR-TRMC) measurements. To shed more light on the nature of the pi-pi interaction of the unsubstituted PBIs, solvent depend aggregation properties have been investigated in Chapter 4. The studies are further extended from core-unsubstituted PBIs to core-substituted ones (Chapter 5 and 6). In Chapter 5, a series of highly soluble and fluorescent core-twisted PBIs that bear the same trialkylphenyl groups at the imide positions but different bay-substituents and were synthesized. These compounds are characterized by distortions of the perylene planes with dihedral angles in the range of 15-37° according to crystallographic data and molecular modeling studies. In contrast to the extended oligomeric aggregates formed for planar unsubstituted PBIs, this family of dyes formed discrete pi-pi-stacked dimers in apolar methylcyclohexane as concentration-dependent UV/Vis measurements and VPO analysis revealed. The Gibbs free energy of dimerization can be correlated with the twist angles of the dyes linearly. In condensed state, several of these PBIs form luminescent rectangular or hexagonal columnar liquid crystalline phases with low isotropization temperatures. The core-twisting effect on semiconducting properties has been examined in Chapter 6. In this chapter, a comparative study of the electrochemical and the charge transport properties of a series of non-substituted and chlorine-functionalized PBIs was performed. While Chapters 3-6 focus on one-component dye systems, Chapter 7 explored the possibility of a supramolecular engineering of co-aggregates formed by hydrogen-bonded 2:1 and 1:1 complex of oligo(p-phenylene vinylene)s (OPVs) and PBIs. Covalently linked donor-acceptor dye arrays have been prepared for comparison. Concentration and temperature-dependent UV/Vis spectroscopy revealed all hydrogen-bonded and covalent systems form well-ordered J-type aggregates in methylcyclohexane. With these hydrogen-bonded OPV-PBI complexes, fibers containing p-type and n-type molecules can be prepared on the nano-scale (1-20 nm). For the 2:1 OPV-PBI hydrogenbonded arrays hierarchically assembled chiral superstructures consisting of left-handed helical pi-pi co-aggregates (CD spectroscopy) of the two dyes that further assemble into right-handed nanometer-scale supercoils in the solid state (AFM study) have been observed. All of these well-defined OPV-PBI assemblies presented here exhibit photoinduced electron transfer on sub-ps timescale, while the electron recombination differs for different systems.Thus, it was suggested that such assemblies of p- and n-type semiconductors might serve as valuable nanoscopic functional units for organic electronics. N2 - Als traditionsreiches in industriellem Maßstab produziertes Pigment finden Perylenbisimid (PBI)-Farbstoffe Verwendung in vielen verschiedenen Anwendungsgebieten. Außerdem sind diese Farbstoffe aufgrund ihrer vielseitigen funktionellen Eigenschaften aussichtsreiche Kandidaten für auf organischen Materialen basierende elektronische und optische Einheiten, wie z.B. Transistoren oder Solarzellen. Für diese neuen Herausforderungen ist die gezielte Kontrolle bzw. Steuerung der Selbstorganisation dieser Farbstofftypen sowie die Erforschung des Zusammenhangs zwischen der supramolekularen Struktur und den optischen und elektronischen Eigenschaften von großem Interesse. Ziel dieser Arbeit war es daher, ein besseres Verständnis für strukturelle und funktionelle Eigenschaften pi-gestapelter Chromophore am Beispiel selbst-aggregierender PBI-Farbstoffe zu entwickeln. Dies umfaßt die Synthese und die Charakterisierung neuer funktioneller PBI-Farbstoffe, die Untersuchung ihrer Aggregate in Lösung, in flüssigkristallinen Phasen, Dünnschichten auf verschiedenen Oberflächen, sowie der Fluoreszenz- und Ladungsträgertransporteigenschaften. Ein Überblick über den Selbstaggregationsprozess, die thermodynamischen Eigenschaften und die Strukturen von pi-Stapeln verschiedener funktioneller pi-konjugierter Moleküle in Lösung und in flüssigkristallinen Phasen wird in Kapitel 2 gegeben. Kapitel 3 und 4 beschäftigen sich mit den pi-pi-Aggregaten neuartiger, stark fluoreszierender PBIs ohne Kernsubstituenten. In Kapitel 3 wurde das Aggregationsverhalten eines PBIs mit Tridodecylphenyl-Substituenten an den Imid-N-Atomen sowohl in Lösung als auch in der kondensierten Phase sehr detailiert untersucht. In der kondensierten Phase wurde eine kolumnar-hexagonale flüssigkristalline (LC) Phase mittels Differenzialkalorimetrie (DSC), optischer Polarisationsmikroskopie und Pulverröntgendiffraktometrie nachgewiesen. Die eindimensionale Stapelanordnung wurde zudem mittels Rasterkraftmikroskopie (AFM) bestätigt, welche ausgedehnte kolumnare Strukturen ergaben. Die Ladungstransporteigenschaften dieses Farbstoffes wurden mittels „pulse radiolysis-time resolved microwave“ (PR-TRMC) Experimenten untersucht. Zur weiteren Aufklärung der Natur der pi-pi-Interaktion des unsubstituierten PBI wurden in Kapitel 4 die lösungsmittelabhängigen Eigenschaften untersucht. Die Studien wurden zudem ausgedehnt von kernunsubstituierten auf kernsubstituierte PBIFarbstoffe. In Kapitel 5 werden die Synthesen einer Reihe sehr gut löslicher, fluoreszierender, nichtplanarer PBI-Farbstoffe vorgestellt, welche dieselben Trialkylphenylimidisubstituenten, jedoch unterschiedliche Bay-Substituenten tragen. Für diese Substanzen wurden mittels kristallographischer Daten sowie quantenchemischer Berechnungen Diederwinkelwinkel im Bereich 15 bis 37° ermittelt. Im Gegensatz zu den ausgedehnten oligomeren Aggregaten des planaren PBI bildet diese Farbstoffklasse aufgrund der Verdrillung des aromatischen Kerns in apolaren Lösungsmitteln wie Methylcyclohexan diskrete pi-pi-gestapelte Dimere. Die Freie Enthalpie für die Dimerisierung korreliert dabei linear mit dem Verdrillungswinkel. In der kondensierten Phase bilden einige dieser PBI-Farbstoffe fluoreszierende, rektangulare bzw. hexagonale kolumnare LC Phasen mit niedrigen Klärtemperaturen. In Kapitel 6 wurden die Auswirkungen des Verdrillungswinkels auf die Halbleitereigenschaften untersucht. Es wurden vergleichende Studien der elektrochemischen Eigenschaften sowie der Ladungsträgertransporteigenschaften einer Serie unsubstituierter und chlorfunktionalisierter PBI-Farbstoffe durchgeführt. Während in Kapitel 3-6 der Fokus auf Einkomponenten-Farbstoffaggregaten lag, wurde in Kapitel 7 die Möglichkeiten einer supramolekularer Anordnung von Co-Aggregaten untersucht, welche durch wasserstoffbrückengebundene 2:1 und 1:1 Komplexe zwischen Oligo(p-phenylenevinylenen) (OPVs) und PBIs aufgebaut sind. Mit diesen wasserstoffbrückengebundenen OPV-PBI Komplexen lassen sich eindimensionale Aggregate auf der Nanoskala erzeugen, welche aus p- und n-halbleitenden Molekülen bestehen. Für die wasserstoffbrückengebundenen 2:1 OPV-PBI Komplexe wurden Anordnungen beobachtet, welche chirale Überstrukturen mit links-drehenden, helicalen pi-pi- Co-Aggregaten (CD-Spectroscopie) aufweisen, die sich wiederum in rechts-drehenden Superhelices bündeln (AFM-Studien). Während für alle OPV-PBI Aggregate photoinduzierte Elektronentransferprozesse im subps Zeitskalenbereich beobachtet wurden, unterschieden sich die Rekombinationsraten je nach System beträchtlich. Somit ist diese Art von organisierten nanoskopischen p- und n-halbleitenden funktionellen. Bausteinen aussichtsreich für verschiedene Anwendungen in der Organischen Elektronik. KW - Perylenderivate KW - Farbstoff KW - Flüssigkristall KW - Selbstorganisation KW - Perylenbisimiden KW - selbstaggregierten KW - Flüssigkristall KW - Farbstoff KW - perylene bisimide KW - self-assembly KW - liquid crystal KW - functional dyes Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19940 ER - TY - THES A1 - Stahl, Rainer T1 - Electroactive Conjugated Polymers as Charge-Transport Materials for Optoelectronic Thin-Film Devices T1 - Elektroaktive konjugierte Polymere als Ladungstransport-Materialien für optoelektronische Dünnschichtbauelemente N2 - In this work the electrochemical and spectroelectrochemical properties of a series of pi-conjugated organic polymers were studied. The polymers were deposited on platinum electrodes or ITO-coated glass substrates by potentiodynamic electro-polymerisation of the corresponding monomeric precursor molecules. The electro-chemical and photophysical properties of the triarylborane monomers were studied in detail in order to estimate possible influences on the behaviour of the corresponding polymer. The first part of this work aimed at the synthesis and investigation of conjugated donor–acceptor polymers which combine the prerequisites of an OLED within one material: the transport of positive and negative charges and the formation of emissive excited states. With the carbazole-substituted oxadiazoles 1–3 it was shown that on the one hand the carbazole functionality is suitable for enabling the electrochemical polymerisation of the monomers and on the other hand it facilitates reversible p-doping of the resultant polymers. Although n-doping of poly-1–poly-3 is possible due to the electron-deficient oxadiazole rings, it causes the continuous degradation of these electron-acceptor units. Interestingly, this process does not influence the capability of p-doping of the polymers. With respect to its electrochemical and spectroelectrochemical properties the behaviour of the borane polymer poly-4 is absolutely identical with that of the oxadiazole polymers. Moreover, the optical excitation of poly-4 in the solid state leads to the emission of blue-green light which suggests that this polymer might also possess electroluminescent properties. AFM-measurements of poly-4 films on ITO-coated glass substrates revealed, that the film thickness can be controlled to a certain extent by the number of polymerisation redox cycles. It was shown from the electrochemical and photophysical properties of the triarylboranes 4–6 that the pi–pi-interaction between boron and nitrogen atoms is comparably weak in these molecules. This leads to an unexpected ground-state polarisation with a partially positive boron atom and a partially negative nitrogen atom. Moreover, it was found that TAB 4 possesses a lower symmetry than D3 in solution and that excitation energy can be transferred amongst the three subchromophores of 4. By titration experiments it was also demonstrated that TAB 4 can reversibly bind fluoride ions and that the binding event significantly influences the optical absorption characteristics of the chromophore. It can be assumed, that the above mentioned properties, which have a profound influence on the photophysical behaviour of these triarylborane chromophores, also determine the behaviour of the corresponding polymer in a solid state environment. The aim of the second part of this work was the investigation of purely n-conducting materials based on electron-deficient borane and viologen polymers. The corresponding precursor molecules should be polymerised on platinum electrodes by reductive electropolymerisation. However, a reductive polymerisation was not possible for the borane monomer 19 which is thought to be due to a strong localisation of the unpaired electron on the central boron atom of the radical anion. An electropolymerisation of the cyano-substituted bispyridinio-compound 17 failed because of the poor quality of CN– as a leaving group. Thus, a synthesis of the analogous isomer 18 was developed, in which the cyano-substituents were exchanged by the better leaving group Cl–. The viologen polymer poly-18, which can be regarded as an electron-deficient iso-electronic analogue of poly(para-phenylene), was successfully deposited on a platinum electrode by reductive electropolymerisation of 18. Poly-18 can be reversibly n-doped at comparably low potentials; however, at higher potentials the polymer is overcharged and destroyed irreversibly. As the synthetic strategy for 18 allows the variation of both spacer unit and leaving group in the last two steps of the reaction sequence, a series of analogous compounds can be easily synthesised using this route. N2 - Im Rahmen der vorliegenden Arbeit wurden die elektrochemischen und spektroelektrochemischen Eigenschaften einer Reihe von pi-konjugierten organischen Polymeren untersucht. Die Polymere wurden durch potentiodynamische Elektropolymerisation der entsprechenden monomeren Vorläufermoleküle auf Platinelektroden bzw. ITO-beschichteten Glassubstraten abgeschieden. Im Falle der Triarylborane wurden die elektrochemischen und photophysikalischen Eigenschaften der Monomere genauer untersucht, um mögliche Einflüsse auf das entsprechende Polymer abschätzen zu können. Der erste Teil dieser Arbeit zielte auf die Synthese und Untersuchung von konjugierten Donor-Akzeptor-Polymeren ab, die die Grundvoraussetzungen für OLEDs in einem Material vereinen: den Transport von positiven und negativen Ladungen sowie die Bildung von emittierenden angeregten Zuständen. Anhand der Carbazol-substituierten Oxadiazole 1–3 konnte gezeigt werden, dass die Carbazol-Funktionalität einerseits geeignet ist eine elektrochemische Polymerisierbarkeit der Monomere zu gewährleisten und andererseits eine reversible p-Dotierung der resultierenden Polymere möglich macht. Eine n-Dotierung der Polymere poly-1–poly-3 ist aufgrund der elektronenarmen Oxadiazol-Ringe zwar möglich, führt aber zum schrittweisen Abbau dieser Akzeptor-Eiheiten. Interessanter-weise lassen sich die Polymere aber weiterhin p-dotieren. Hinsichtlich seiner elektrochemischen und spektroelektrochemischen Eigen-schaften weißt das Boran-Polymer poly-4 ein zu den Oxadiazol-Polymeren absolut identisches Verhalten auf. Darüber hinaus konnte gezeigt werden, dass die optische Anregung von poly-4 im Festkörper zur Emission von blau-grünem Licht führt, was die Vermutung nahe legt, dass dieses Polymer auch elektrolumineszierende Eigenschaften besitzen könnte. AFM-Messungen an Filmen von poly-4 auf ITO-beschichteten Glassubstraten ergaben weiterhin, dass sich die Schichtdicke des Polymers durch die Anzahl der Polymerisationszyklen in einem gewissen Bereich einstellen lässt. Anhand der elektrochemischen und photophysikalischen Eigenschaften der Triarylborane 4–6 konnte gezeigt werden, dass die pi-Konjugation zwischen den Bor- und Stickstoff-Atomen in diesen Molekülen sehr gering ist. Dies führt zu einer ungewöhnlichen Grundzustandspolarisation mit partiell positivem Bor und partiell negativem Stickstoff. Darüber hinaus wurde festgestellt, dass das Triarylboran 4 in Lösung eine geringere Symmetrie als D3 aufweißt und dass die durch eine optische Anregung aufgenommene Energie entlang der identischen Subchromophore von 4 übertragen werden kann. Durch Titrationsexperimente konnte außerdem gezeigt werden, dass 4 Fluoridionen reversibel binden kann, wobei sich das optische Absoptionsverhalten des Chromophors deutlich ändert. Es kann angenommen werden, dass die genannten Eigenschaften, die sich entscheidend auf das photophysikalische Verhalten dieser Triarylboran-Chromophore auswirken, auch die Eigenschaften des entsprechenden Polymers im Festkörper beeinflussen. Im zweiten Teil dieser Arbeit sollten reine n-Leiter Materialien auf der Basis von elektronenarmen Boran- bzw. Viologen-Polymeren untersucht werden. Die entsprechenden Vorläufermoleküle sollten dabei durch reduktive Elektro-polymerisation auf Platinelektroden polymerisiert werden. Im Falle des Boran-Monomers 19 war eine reduktive Polymerisation nicht möglich, was vermutlich auf eine starke Lokalisierung des ungepaarten Elektrons auf dem zentralen Boratom des Radikalanions zurückzuführen ist. Bei der Cyano-substituierten Bispyridinio-Verbindung 17 scheiterte eine reduktive Elektro-polymerisation an der schlechten Qualität von CN– als Abgangsgruppe. Daher wurde eine Synthese für das analoge Isomer 18 entwickelt, bei dem die Cyano-Substituenten gegen die bessere Abgangsgruppe Cl– ausgetauscht wurden. Durch reduktive Elektropolymerisation von 18 konnte das entsprechende Viologen-Polymer, welches als elektronenarmes isoelektronisches Analogon zu Poly(para-phenylen) angesehen werden kann, auf einer Platinelektrode abgeschieden werden. Das Viologen-Polymer poly-18 kann bereits bei relativ niedrigen Potentialen reversibel n-dotiert werden, bei zu hohen Potentialen wird das Polymer jedoch überladen und irreversible zerstört. Da es die für 18 verwendete Synthesestrategie erlaubt, sowohl die Spacereinheit als auch die Abgangsgruppe in den letzten zwei Reaktionsschritten zu variieren, sind auf diesem Weg weitere analoge Verbindungen leicht zugänglich. KW - Polymerhalbleiter KW - OLED KW - halbleitende Polymere KW - OLED KW - Borane KW - Fluoreszenz KW - semiconducting polymers KW - OLED KW - boranes KW - fluorescence Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16980 ER - TY - THES A1 - Amthor, Stephan T1 - Redox properties of Bis-Triarylamines and ligand properties of Thianthrenophane T1 - REDOXEIGENSCHAFTEN VON BIS-TRIARYLAMINEN UND LIGANDENEIGENSCHAFTEN VON THIANTHRENOPHAN N2 - The one electron oxidation potential of ten TAAs with all permutations of Cl , OMe- and Me-substituents in the three p-positions were determined by CV. The half wave potential of the first oxidation wave correlates linearly with the number of Cl- and OMe-substituents. AM1-CISD derived values of the absorption energies are in good agreement with the experiments but differ strongly for the oscillator strengths as well as for neutral compounds and their corresponding mono radical cations. The small solvent dependence of the experimental UV/Vis spectra in CH2Cl2 and MeCN reflects a minor charge transfer character of the electronic transitions. The UV/Vis/NIR spectra of the series of TAAs and their corresponding radical cations and the AM1 computations reveal that even small substituents may lead to strong symmetry breaking and to a modified electronic structure. The spectroscopic properties of a series of four bis-TAA donor-bridge-donor X-B-X dimers, composed of two asymmetric TAA chromophores (monomers) were investigated. UV/vis-, fluorescence and transient absorption spectra were recorded and compared with those of the corresponding X-B monomers. The excited states of the dimers are described as MV states which show, depending on the chemical nature of the bridge, a varying amount of interactions. It was found that superradiant emission only proceeds in the case of weak and medium coupling. Whether the first excited state potential energy surface of the dimers is a single minimum or a double minimum potential depends on the solvent polarity and the electronic coupling. In the latter case, the dimer relaxes in a symmetry broken CT state. The [2.2]paracyclophane bridged dimer is an example for a weakly coupled system, because the spectroscopic behavior is very similar to the corresponding p xylene monomer. In contrast, anthracene as well as p-xylene bridges mediate a stronger coupling and reveal a significant cooperative influence on the optical properties. A series of [2.2]paracylophane bridged bis-TAA MV radical cations X-B-X+ were analyzed by a GMH three-level model which takes two transitions into account: the IV-CT band and the bridge band. From the GMH analysis, one can conclude that the [2.2]paracyclophane moiety is not the limiting factor which governs the intramolecular charge transfer. The electronic interactions are of course smaller than direct conjugation but from the order of magnitude of the couplings of the [2.2]paracyclophane MV species it can be assumed that this bridge is able to mediate significant through-space and through-bond interactions. From the exponential dependence of the electronic coupling V between the two TAA localized states on the distance r between the two redox centers, it was inferred that the HT proceeds via superexchange mechanism. The analysis reveals that even significantly longer conjugated bridges should still mediate significant electronic interactions, because the decay constant of a series of conjugated MV species is small. The absorption properties of a series of bis-TAA-[2.2]paracyclophane dications X+-B-X+ were presented. The localized and the CT transitions of these dications are explained and analyzed by an exciton coupling model which also considers the photophysical properties of the monomeric TAA radical cations. Together with AM1-CISD calculated transition moments, experimental transition moments and transition energies of the bis-TAA dications were used to calculate electronic couplings by a GMH approach. These couplings are a measure for interactions of the excited MV CT states. The modification of the diabatic states reveals similarities of the GMH three-level model and the exciton coupling model. Comparison of the two models shows that the transition moment between the excited mixed-valence states of the dimer equals the dipole moment difference of the ground and the excited bridge state of the corresponding monomer. Thianthrenophane (1) has a cavity which offers enough room to potentially enable endohedral coordination to small ions or molecules. For the complexation of silver(I) perchlorate, the complex stability constants of thianthrenophane logK1=5.45 and of thianthrene logK2=9.16 were determined by UV/Vis titration. Single competition transport experiments with ten metal salts demonstrate a very high selectivity of thianthrenophane as a carrier for silver(I) and a distinctly higher transport rate compared to carriers such as thianthrene and 14-ane-S4. Although the X-ray crystal structure analysis of the polymeric [Ag(1)]ClO4 shows an exohedral coordination to silver(I), the formation of an endohedral [Ag(1)]+ complex is suggested to be the explanation for the unusual carrier selectivity of silver(I) by 1 in bulk liquid membrane. N2 - Zehn verschiedene TAAs mit allen möglichen Permutationen der Substituenten Cl, OMe und Me in allen drei p-Position zum zentralen Stickstoff wurden untersucht. Die mit CV bestimmten Potentiale dieser Verbindungen zeigen eine lineare Korrelation zur Anzahl der Cl- und OMe-Substituenten. Die semiempirische AM1-CISD berechneten Absorptionsenergien stimmen gut mit den Messungen überein, es zeigen sich jedoch große Abweichungen bei den entsprechenden Oszillatorstärken. Die UV/Vis-Spektren und die AM1 Berechnungen der TAAs und TAA-Radikalkationen zeigen auf, dass selbst kleine Substituenten zu einem Symmetriebruch in Lösung führen können, welcher einen bedeutenden Einfluss auf die elektronischen Zustände hat. Zwei TAA-Chromophore wurden über verschiedene Brückeneinheiten miteinander zu Donor-Brücke-Donor Dimere (X-B-X) verknüpft. Die angeregten Zustände der Dimere können als MV Zustände verstanden werden, welche in Abhängigkeit der Brücke, unterschiedliche Wechselwirkungen aufweisen. Beim Vergleich der Fluoreszenzquantenausbeuten der Monomere X-B mit denen der entsprechenden Dimere stellt sich heraus, dass es nur im Falle schwacher und mittlerer elektronischen Kopplung zu einer starken Erhöhung der Quantenausbeute im Dimer kommt. Die Potentialhyperfläche des ersten angeregten Zustandes der Dimere hat, in Abhängigkeit von der Kopplung und der Lösungsmittelpolarität, entweder nur ein Minimum oder zwei Minima. Im Falle eines Doppleminimums kommt es nach der optischen Anregung zu einer Relaxation in einen symmetriegebrochenen ladungsgetrennten Zustand. Das Dimer mit einer [2.2]Paracyclophan-Brücke zeigt eine geringe Kopplung, weshalb die optischen Eigenschaften dieses Dimers denen des entsprechenden p-Xylol-Monomers sehr ähnlich sind. Im Gegensatz dazu vermitteln die Anthracen- und auch die p-Xylol-Brücke stärkere Wechselwirkungen zwischen den beiden TAA-Chromophoren, welche sich in dem signifikanten Einfluss auf die optischen Eigenschaften dieser Dimere widerspiegeln. Die Absorptionseigenschaften von MV [2.2]Paracyclophanverbrückten Bis-TAAs X-B-X+ wurden mit Hilfe eines GMH-Dreiniveaumodells ausgewertet. Dieses Modell berücksichtigt die IV-CT-Bande und die Brückenbande. Aus der GMH-Analyse ist zu schließen, dass bezüglich des intramolekularen Ladungstransfers die [2.2]Paracyclophaneinheit nicht der limitierende Faktor ist. Die elektronischen Wechselwirkungen sind zwar schwächer als im Falle von direkter Konjugation, aber es zeigen sich starke "through-bond" und "through-space" Wechselwirkungen. Das bedeutet, dass die [2.2]Paracyclophaneinheit sich eher wie eine ungesättigte Brücke verhält. Der exponentieller Zusammenhang zwischen der elektronischen Kopplung V und dem Abstand zwischen den beiden Redoxzentren läßt auf einen Superaustauschmechanismus schließen. Von den Dikationen der [2.2]Paracyclophanverbrückten Bis-TAAs X+-B-X+ („Dimere“) wurdn die Absoprtionseigenschften untersucht. Mit Hilfe der experimentellen Übergangsmomente und Anregungsenergien und semiempirisch (AM1-CISD) berechneten Übergangsmomenten zwischen den beiden angeregten Zuständen wurde eine Auswertung mit einem GMH-Dreiniveaumodell durchgeführt. Die daraus resultierende elektronische Kopplung ist ein Maß für die Wechselwirkungen innerhalb der angeregten MV CT-Zustände. Das GMH-Dreiniveaumodell konnte dahingehend modifiziert werden um klare Analogien zwischen GMH-Modell und Exciton-Coupling-Modell zu verdeutlichen. Dabei konnte gezeigt werden, dass das Übergangsmoment zwischen den beiden MV angeregten Zuständen des Dimers der Dipolmomentsdifferenz des Grundzustandes und des CT-Zustandes des entsprechenden Monomers entspricht. Die Ligandeneigenschaften von Thianthrenophan (1) bezüglich der Komplexierung von Silber(I)ionen wurden untersucht. Eine Röntgenstrukturanalyse hat gezeigt, dass der Raum zwischen den beiden Thianthrenuntereinheiten groß genug ist, um Platz sowohl für kleine Moleküle als auch für kleine Ionen zu bieten. Die Komplexierung von Silber(I)perchlorat mit Thianthrenophane ergab eine Komplexierungskonstante von logK1=5.45 und die Komplexierung von Silber(I)perchlorat mit Thianthrene ergab logK2=9.16. Es wurden Ionentransportexperimente durch Flüssigmembranen mit jeweils zehn verschiedenen Metallsalzen gleichzeitig durchgeführt. Damit konnte gezeigt werden, dass Thianthrenophan eine hohe Selektivität bezüglich des Transports von Silber(I)ionen hat. Des Weiteren zeigte sich, dass die Transportraten von Thianthrenophan deutlich größer sind als die von Molekülen wie Thianthren und 14-ane-S4. Eine Röntgenstrukturanalyse des Polymerkomplexes [Ag(1)]ClO4 zeigt, dass Silber(I) von außen koordiniert. Nichtsdestotrotz wird davon ausgegangen, ein endohedraler [Ag(1)]+-Komplex ist die Erklärung für die ungewöhnliche Transportselektivität und für die außerordentlich hohe Transportrate von Silber(I)ionen in den Transportexperimenten mit Thianthrenophan als Carrier. KW - Triarylamine KW - Paracyclophane KW - Redoxreaktion KW - Triarylamin KW - Cyclophan KW - Mulliken-Hush KW - Intervalenzladungstransfer KW - Komplexierung KW - triaryalmine KW - cyclophane KW - Mulliken-Hush KW - intervalence charge-transfer KW - complexation Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15916 ER - TY - THES A1 - Kriegisch, Volker T1 - Electron transfer processes between organic redox centres and electrodes via active bridges in self-assembled monolayers T1 - Elektronentransferprozesse zwischen organischen Redoxzentren und Elektroden mittels „aktiver“ Brückeneinheiten in selbstorganisierenden Monolagen N2 - Cyclovoltammetrische Messungen der Ferrocenalkylthiole 1 – 3 belegen, dass homogene, gemischte Monolagen aus redoxaktiven Verbindungen und redoxinaktiven Alkylthiolen gebildet werden. Die von Creager et al. bestimmten ET Raten der Ferrocenalkylthiole 1 – 3 konnten hierbei verifiziert werden. Wie erwartet erfolgt eine Abnahme der ET Geschwindigkeit bei einer Kettenverlängerung des Alkylspacers von 2 nach 3. Eine unterschiedliche Konnektivität zwischen Redoxzentrum und Alkylspacer, z. B. die Einführung einer Carbonyl-Funktion im Falle von 1, unter Beibehaltung der Kettenlänge zeigt keinen bemerkbaren Einfluß auf den ET. Trotzt vergleichbaren Abstands der aromatischen Ferrocenthiole 4 und 5 zu der C8-Alkyl-Verbindung 2 zwischen Redoxzentrum und Elektrode, weisen diese aufgrund ihrer starken Konjugation sehr hohe ET Geschwindigkeiten auf. Die elektronischen Kopplungsfaktoren selbst deuten auf einen nichtadiabtischen ET zwischen Redoxzentrum und Elektrode hin. Wie erwartet kommt es zu einem Anwachsen der Kopplungsfaktoren bei sich verkürzender Kettenlänge oder bei Einführung konjugierter Spacersysteme. Zusammenfassend kann gesagt werden, dass Erfahrungen hinsichtlich der Präparation der Monolagen gesammelt, die gemessenen ET Raten für der literaturbekannten Verbindungen 1 – 3 bestätigt und diese Informationen auf die konjugierten Verbindungen 4 und 5 angewandt werden konnten. Im zweiten Teil wurden die Triarylamin- (29, 32) und Phenothiazinalkylthiole (35) bezüglich ihres ET Verhaltens in gemischten Monolagen untersucht. Mittels Cyclovoltammetrie konnte gezeigt werden, daß einheitlich geformte, verdünnte Monolagen vorliegen. Die ET Raten der Triarylamin- (29, 32) und Phenithiazinalkylthiole (35) sind jedoch um den Faktor 10 bis 100 höher als vergleichbare Ferrocenalkylthiole gleicher Kettenlänge [1, 2], wohingegen für Monolagen, welche [Ru(bpy)2(pp)]+-Alkythiole enthalten, äquivalente Werte gefunden wurden [3]. Die ET Geschwindigkeit wird von zwei Parametern beeinflusst: dem elektronischen Kopplungsmatrixelement und der Regorganisationsenergie  [4]. Die ET Geschwindigkeit in Donor-substituierten Alkylthiolen wird hauptsächlich durch  beeinflusst und sogar kleine Änderungen dieser zeigen eine große Auswirkung auf die zu untersuchenden Prozesse. Aus diesem Grund wird eine Zunahme der ET Geschwindigkeit von Ferrocen (hohe Reorganisationsenergie) über die Phenothiazinverbindung 35 und [Ru(bpy)2(pp)]+ zu den Triarylaminchromophoren 29 und 32 (niedrige Reorganisationsenergie) beobachtet. Weiterhin spielt, im Gegensatz zu Beobachtung von Creager et al. an äquivalenten Ferrocenverbingungen, die Anbindung des Redoxzentrums an den Alkylspacer eine bedeutende Rolle. Im Falle der elektronenreichen Ether-verbrückten Verbindung 29 wird der ET nicht alleine durch , sondern ebenso durch mesomere Effekte bestimmt. Bei 29 kommt es durch Lokalisation der positiven Ladung nahe der Ether Funktion formal zu einer Kettenverkürzung um eine „Methyleneinheit“, welche schließlich in höheren ET Geschwindigkeiten resultiert. Im dritten Teil dieser Dissertation wurde ein Serie „molekularer Drähte“ bestehend aus Methoxy- oder Chlorid-substituierten Triarylamin- und Phenothiazinverbindungen mit unterschiedlichen Brückeneinheiten und Brückenlängen zwischen Redoxzentrum und Ankerfunktion dargestellt und im Hinblick auf ihr ET Verhalten untersucht. Durch cyclovoltammetrische und UV/Vis-spektroskopische Untersuchungen konnte gezeigt werden, dass sowohl die Oxidationspotentiale als auch die energetischen Zustände der Chromophore recht gut durch Einführung unterschiedlicher Redoxzentren und Brückeneinheiten beeinflusst werden können. Trotz erfolgreicher Kontrolle der Dichte der Chromophoreinheiten in den gemischten Monolagen konnte nur für die Verbindungen 49, 52 und 87 mit Nitril-substituierten Brückeneinheiten verlässliche ET Geschwindigkeiten erhalten werden. Bei diesen Chromphoren ist ein Absinken der ET Geschwindigkeit bei zunehmender Dichte der redoxaktiven Moleküle in den gemischten Monolagen zu beobachten, welche auf eine Änderung der Adsorptionsgeometrie hindeutet. Bei zunehmender Packungsdichte der Chromophore führt dies zu einer aufrechteren Stellung der redoxaktiven Spezies. Für alle anderen Verbindungen konnten keine Werte aufgrund der zu schnellen ET Geschwindigkeiten ermittelt werden. Konformelle, wie auch die sehr geringe Abstandsabhängigkeit des ET, resultieren in hohen ET Geschwindigkeiten oder auch ungünstige HOMO-LUMO Energien bezüglich des Donors, der Brücke und der Elektrode sind Gründe für dieses Verhalten. Die Tatsache, dass Verbindung 49 und 52 beinahe die gleichen Geschwindigkeitskonstanten des ETs unabhängig von der Anzahl der Brückeneinheiten (n = 2, n = 3) besitzen, deutet darauf hin, dass ein Hopping-Prozess stattfindet, bei welchem eine geringere Längenabhängigkeit des ETs als bei eine Superexchange-Mechanismus zu erwarten ist. N2 - In this work the influence of “active” bridge units on the electron transfer (ET) mechanism within organic donor-bridge-electrode arrays in self-assembled monolayers (SAMs) was studied by spectroscopic and electrochemical methods. In the first part of this work ferrocenealkanethiols 1 – 3 and the ferrocenearylthiols 4, 5 were investigated to get experience in the monolayer preparation for measuring ET rates. Cyclic voltammetry of the monolayers indicates that homogeneously mixed monolayers containing redox active molecules and dummy molecules were formed. For the known ferrocenealkanethiols 1 – 3 the ET rates could be confirmed compared to the ones measured by Creager et al. [206]. As expected the ET rate decreases by increasing chain length of the alkane spacer from 2 to 3. Changing the bonding between the redox centre and the alkane spacer with the same bridge lenght, e. g. by using a carboxy-group in case of 1, does not influence the ET behaviour very strong. The aromatic ferrocenethiols 4 and 5 show very high ET rates due to the strong conjugated system although the distance between the redox centre and the electrode is comparable to the C8-alkyl compound 2. The electronic coupling factors all indicate a nonadiabatic ET between the redox centre and the electrode. As expected the electronic coupling factors increase with decreasing spacer length or with an enlarged conjugated system. To sum up, experience in monolayer preparation could be obtained, the measured ET rates for well known ferrocenealkane-compounds 1 - 3 could be verified and the information could be transferred to the conjugated systems 4 and 5. In the second part the triarylamine- 29, 32 and the phenothiazinealkanethiol 35 have been examined relative to their ET behaviour in mixed monolayers. The cyclic voltammograms of the diluted monolayers indicate that homogeneously formed monolayers are present. The ET rates of triarylamine- 29, 32 and phenothiazinealkanethiols 35 are 10 to 100 times higher than compared to ferrocenealkanethiols with equal chain length[183, 206], whereas in a [Ru(bpy)2(pp)]+-containing monolayer the same value was observed [177]. Almost two parameters influence the ET rate constant: the electronic coupling matrix element and the reorganisation energy  [209]. The ET rate in donor substituted alkanethiols is mainly influenced by the reorganisation energy  [177] and even small changes have a dramatic effect on the observed processes, therefore an increasing ET rate from the ferrocene (high reorganisation energy) over the phenothiazine 35 and the [Ru(bpy)2(pp)]+ to the triarylamine chromophores 29 and 32 (low reorganisation energy) is observed. Furthermore the bonding between the redox centres and the alkane spacer plays an important role on the ET rate in case of the triarylamines 29 and 32 opposite to the assumption made by Creager et al. that the connection does not play any role. For the electron rich ether connected compound 29 the ET is not only dominated by the reorganisation energy but also by mesomeric effects where the positive charge of the electron rich derivative 29 is more located at the ether function so that the chain is formally shortend by one atom resulting in higher ET rates than compared to 32. In the third part of the thesis a series of “molecular wires” consisting of methoxy- or chloro-substituted triarylamines and phenothiazines with different bridge units and bridge length between the redox centre and the anchor thiol function have been prepared in order to investigate their ET-behaviour. Cyclic voltammetry and UV/vis-spectroscopy show that the oxidation potential and the energetic states could be controlled very well by introducing different redox centres and bridge units resulting in a decreasing oxidation potential of the redox centres and a bathochromic shift of the absorption bands in the UV/vis-spectra. Also the densitiy of the chromophores in mixed monolayers could be controlled very well for only three compounds (49, 52 and 87) with nitrile-substituted bridges reliable ET rates could be obtained. In these chromophores the ET rate decreases by increasing the density of the redox active molecules in the mixed monolayers indicating that the adsorption geometry changes with coverage with the chromophores tilting to a more upright orientation as the surface becomes more crowded. For all other compounds the measurements were limited by the fast ET rates. Conformational, as well as a very weak distance dependence of the ET resulting in very high ET rates [172] or unfavourable HOMO-LUMO energies of the donor, bridge and the electrode are reasons for this behaviour. The fact that compound 49 shows almost the same rate constant independent of the length (n = 2 or n = 3) may indicate that a hopping process is operating for which a much weaker length dependence is expected than in the case of a superexchange. KW - Monoschicht KW - Selbstorganisation KW - Triarylamine KW - Gold KW - Elektronentransfer KW - Chromophor KW - selbst organisierende Monolagen (SAM) KW - Gold KW - Elektronentransfer KW - Triarylamin KW - Chromophore KW - self-assembled monolayer (SAM) KW - gold KW - electron transfer KW - triarylamine Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15892 ER - TY - THES A1 - Dobrawa, Rainer Anton T1 - Synthesis and characterization of terpyridine-based fluorescent coordination polymers T1 - Synthese und Charakterisierung von fluoreszierenden Terpyridin-Koordinationspolymeren N2 - Complexation properties of 2,2':6',2''-terpyridine (tpy) have been studied with a series of first row transition metal ions by UV-vis, 1H NMR and isothermal titration calorimetry and ƒ´H values for the tpy complexation processes have been determined. These studies reveal that Zn2+ is the best suited metal ion for the reversible coordination of the terpyridine ligand. Thus, supramolecular coordination polymerization of perylene bisimide fluorophores containing terpyridine functionalities have been investigated by using Zn2+ as metal ion. The formation of the dimeric complexes in the case of monotopic model comounds and coordination polymerization of ditopic functional building blocks have been confirmed by 1H NMR studies. The optical properties of dimeric and polymeric complexes have been investigated by UV-vis and fluorescence spectroscopy. The Zn2+ coordination to the terpyridine unit does not effect the advantageous fluorescence properties of perylene bisimide moieties. The reversibility of the formation of coordination polymers has been established by 1H NMR and additionally by DOSY NMR and fluorescence anisotropy measurements. Coordination polymer strands can be visualized by atomic force microscopy (AFM), which also reveals the formation of an ordered monolayer film at higher concentration. The average polymer length has been determined by AFM to 15 repeat units, which correlates well with the value estimated by 1H NMR to >10 repeat units. N2 - Die Komplexierungseigenschaften von 2,2':6',2''-Terpyridin (tpy) wurden mit einer Reihe von Übergangsmetallen mittels UV-Vis, 1H-NMR und Isothermer Titrationskalorimetrie (ITC) untersucht, dabei wurde auch die Komplexierungsenthalpie bestimmt. Diese Studien zeigen, dass Zn2+ am besten zum Aufbau reversibler Terpyridin-Koordinationspolymere geeignet ist. Aus diesem Grund wurde die supramolekulare Polymerisation von Terpyridin-funktionalisierten Perylenbisimid-Fluorophoren mit Zn2+ untersucht. Die Bildung des dimeren Komplexes im Fall der monotopen Modellverbindung und des Koordinationspolymers im Fall des ditopen Liganden wurde durch NMR Titrationen bestätigt. Die optischen Eigenschaften der Komplexe wurden durch UV-Vis und Fluoreszenzspektroskopie untersucht. Die Koordination von Zn2+ an die Terpyridin-Einheit zeigt keinen Einfluß auf die vorteilhaften Fluoreszenzeigenschaften der Perylenebisimid-Einheit. Die Reversibilität der Koordinationspolymer-Bildung wurde durch NMR nachgewiesen und zusätzlich durch DOSY NMR und Fluoreszenzanisotropie-Messungen bestätigt. Die Koordinationspolymerstränge können durch Rasterkraftmiskroskopische Messungen (AFM) visualisiert werden. Bei Probenpräparation aus konzentrierter Lösung bildet sich dabei eine Monolage eines geordneten Films. Die durchschnittliche Polymerlänge wurde durch AFM auf ca. 15 Wiederholungseinheiten bestimmt. Dieser Wert stimmt gut mit dem aus NMR-Daten bestimmten Wert von >10 Einheiten überein. KW - Terpyridinderivate <2 KW - 2':6' KW - 2"-> KW - Polymerkomplexe KW - Fluoreszenz KW - Fluoreszenz KW - Perylenbisimid KW - Koordinationspolymer KW - Polymer KW - Fluorescence KW - Perylene Bisimide KW - Coordination Polymer KW - Polymer Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-10367 ER - TY - THES A1 - Geiger, Lars T1 - The versatile use of Guanidiniocarbonylpyrroles : from self-assembly to peptide recognition T1 - Der vielseitige Einsatz von Guanidiniocarbonylpyrrolen: Von der Selbstassoziation bis zur Peptide-Erkennung N2 - Die vorliegende Arbeit gliedert sich in zwei Themenschwerpunkte. Ein supramolekulares Projekt beinhaltete die Entwicklung von neuen flexiblen, selbst-aggregierenden Zwitterionen als Bausteine für supramolekulare Polymere. In einem zweiten bioorganischem Teil bestand das Ziel darin, Rezeptoren für Aminosäuren und Dipeptide in Wasser zu entwickeln. Beide Projekte basieren auf dem Guanidiniocarbonylpyrrol als effizientes Bindungsmotiv für die Komplexierung von Carboxylaten in wässrigen Lösungen. Eine notwendige Voraussetzung für die Realisierung dieser Projekte war jedoch zunächst die Entwicklung einer allgemeinen, effizienten und milden Synthese für Guanidiniocarbonylpyrrole. Die bei der zuvor verwendeten Methode aggressiven Reaktionsbedingungen und die problematische Aufreinigung verhinderten eine größere Anwendung dieses Bindungsmotivs in bioorganischen und supramolekularen Projekten. Im Rahmen dieser Arbeit gelang es mir erfolgreich eine neue Syntheseroute zu entwickeln. Hierbei wurde mono-tBoc-Guanidine mit dem Benzylester mittels PyBOP gekuppelt und nach Entschützung der Benzylschutzgruppe wurde die zentrale Zwischenstufe für die weiteren Synthesen, die tBoc-geschützte Guanidinocarbonylpyrrol-Säure erhalten. Durch diese neuartige Synthese war es möglich, eine Reihe von flexiblen Zwitterionen 3-6 herzustellen und deren Selbst-Aggregation und den Einfluß der Kettenlänge und somit Flexibilität der Alkylkette auf Struktur und Stabilität der gebildeten Aggregate in Lösung sowie auch in der Gasphase zu untersuchen. In DMSO deuten NMR-Verdünnungsreihen darauf hin, dass die flexiblen Zwitterionen mit n = 1, 3 und 5 oligomere Strukturen ausbilden. Im Falle von n = 1 werden hoch stabile helicale und Nanometer große Aggregate in der gebildet. In den Gasphasen-Studien wurde die Stabilität und Zerfallskinetik einer Reihe von Natriumaddukten der Dimere von n = 2, 3 und 5 untersucht. Dieses gelang durch die Methode der „infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometry“ (IRMPD-FT-ICR MS). Solche Studien ermöglichen möglicherweise in Zukunft das gezielte Design von supramolekularen Bausteinen. Der bioorganische Teil meiner Arbeit setzte sich aus drei Einzelprojekten zusammen. So synthetisierte ich durch eine fünfstufige Synthesesequenz vier neue Arginin-Analoga, die in Zukunft als Ersatz für Arginin in Peptide eingebaut werden können. Als Testreaktion für die Eignung dieser Verbindungen in einer Festphasenpeptidsynthese, wurde ein Tripetid Ala-AA1-Val (AA: Arginin-Analogon) mit einem eingebauten Arginin-Analogon erfolgreich hergestellt. In einem zweiten Projekt habe ich den Einfluß einer zusätzlichen ionischen Wechselwirkung in unserem Bindungsmotiv untersucht. Dazu wurde ein zweifach-kationischer Rezeptor und der dreifach-geladenen Rezeptor synthetisiert und physikalisch-organisch ihre Bindungseigenschaften mit Hilfe von NMR-Titrationsexperimenten gegen eine Reihe von Aminosäuren untersucht. Der dreifach-kationische Rezeptor 11 zeigte hierbei herausragende Bindungseigenschaften und war um ca. den Faktor 100 besser als für die bisher bekannten Guanidiniocarbonylpyrrole. Die Assoziationskonstanten waren auch fast reinem Wasser mit bis zu Kass = 2000 noch bemerkenswert hoch. Im dritten Projekt habe ich einen de-novo entwickelten Rezeptor für C-terminale Dipeptide in einer beta-Faltblatt Struktur entwickelt.Dieser Rezeptor wurde mittels NMR and UV-Titrationen untersucht. In 40 % Wasser/ 60 % DMSO waren die Bindungskonstanten zu hoch um überhaupt quantifiziert zu werden. Deshalb wurden die Bindungseigenschaften des Rezeptors mittels UV Titrationen in einer Mischung aus 90 % Wasser mit 10 % DMSO gegen eine Reihe von Dipeptiden und Aminosäuren getestet. Die Bindungsdaten zeigen, dass Rezeptor Dipeptide mit ausgezeichneten Bindungskonstanten (Kass > 10000 M-1) komplexiert. Im Gegensatz dazu bindet der Rezeptor 12 Aminosäuren um den Faktor zehn schlechter (Kass > 1000 M-1). Die Komplexstabilität nimmt hierbei in Abhängigkeit von der Seitenkette des Dipeptids in der Reihe Gly < Ala < Val zu, was sich mit der abnehmenden Flexibilität und zunehmenden Hydrophobizität der Seitenkette erklären lässt. Diese Eigenschaften machen den Rezeptor 12 zu dem besten bisher bekannten Dipeptidrezeptor in wässrigen Lösungen. Innerhalb meiner Arbeit gelang es mir somit, nicht nur eine essentiell wichtige, milde und effiziente Synthese für Guanidinocarbonylpyrrole zu entwickeln, sondern es gelang mir ebenso ein neues Bindungsmotiv für die Komplexierung von Aminosäuren in Wasser zu entwickeln. Zusätzlich konnte noch der Dipeptidrezeptor erfolgreich synthetisiert und untersucht werden. Mit Bindungskonstanten für von Kass > 10000 M-1 ist er der derzeit beste Dipeptidrezeptor in wässriger Lösung. N2 - The present thesis encompasses two parts. The first supramolecular part focuses on the development of new flexible self-assembling zwitterions as building blocks for supramolecular polymers. In the second part, the aim was to develop bioorganic receptors for amino acids and dipeptides in aqueous media. Both research projects are based on the guanidiniocarbonyl pyrrole 1 as a new efficient binding motif for the complexation of carboxylates in polar solution.A necessary requirement for the realization of these research projects was to develop an efficient and mild synthetic approach for the cationic guanidiniocarbonyl pyrroles in general. The harsh reaction conditions of the previously used method and the problematic purification of the cationic guanidinocarbonyl pyrroles so far prevented a more extensive exploration in bioorganic and supramolecular research. In the course of this work I successfully developed a new synthesis starting with mono tBoc-protected guanidine that was coupled with a benzyl protected pyrrole carboxylic acid. After deprotection of the benzyl group, a key intermediate in the newly developed synthesis, the tBoc-protected guanidinocarbonyl pyrrole acid, was obtained. This new, mild and extremely efficient synthetic approach for the introduction of acyl guanidines is now the standard procedure in our group for the preparation of both solution and solid-phase guanidiniocarbonyl pyrroles. With this facile method at hand, a new class of flexible zwitterions, in which a carboxylate is linked via an alkyl chain to a guanidiniocarbonyl pyrrole cation was synthesized. The self-aggregation and the influence of the length and therefore flexibility of the alkyl spacer on the structure and stability of the formed aggregates were studied in solution and gas phase. In solution the aggregation was studied by NMR-dilution experiments in DMSO which suggest that flexible zwitterions with n = 1, 3 and 5 form oligomers. For n = 1, highly stable helical aggregates with nanometer size are formed. In the gas phase studies the stability and the fragmentation kinetics of a series of sodiated dimeric zwitterions with n = 2, 3 and 5 were investigated. This was done by infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometry (IRMPD-FT-ICR-MS). These kinds of studies can be used in the future for a more directed design of supramolecular building blocks The bioorganic research part comprises three different projects. In a first project I synthesized four new arginine analogues which can be implemented in peptides as a substitute for arginine. Therefore, I developed the new multi-step synthesis shown below for these arginine analogues. As a test for their application in normal solid phase synthesis, I successfully prepared a tripeptide sequence Ala-AA1-Val (AA: arginine analogue. In a second project I studied the influence of additional ionic interactions within our binding motif. I synthesized a di-cationic and a tris-cationic receptor and evaluated the binding properties via NMR titration experiments against a variety of amino acids. Especially, the tris-cationic receptor was capable to strongly complex amino acids. The association constants were about a factor of 100 higher than those for the guanidiniocarbonyl pyrroles known so far. Even in 90 %water/10 % DMSO the association constants determined by NMR titration were extremely high with values around Kass = 2000 M-1. In the third project I developed a de-novo designed receptor for C-terminal dipeptides in a beta-sheet conformation based on molecular calculations. This receptor was studied in NMR and also UV titration experiments. In 40 % water/ 60 % DMSO the association constants were too strong to be measured by NMR titration experiments. Therefore, the complexation properties of 12 were studied by UV titration in water (with 10 % DMSO added for solubility reasons) with various dipeptides and amino acids as substrates. The data show that 12 binds dipeptides very efficiently even in water with association constants Kass > 10000 M-1, making 12 one of the most effective dipeptide receptors known so far. In contrast to that, simple amino acids are bound up to ten times less efficiently (Kass > 1000 M-1) than dipeptides. In the series of dipeptides studied the complex stability increases depending on the side chains present in the order Gly < Ala < Val which is a result of the decreasing flexibility of the peptide and the increasing hydrophobicity of the side chains. The binding properties of this receptor are superior to any other dipeptide receptor reported so far. Within my thesis I have not only developed an essential, mild and efficient synthetic approach for guanidiniocarbonyl pyrroles in general, but also a new binding motif for the complexation of amino acids 15, 11 and in addition a dipeptide receptor 12 that is superior to all dipeptides receptors known so far. KW - Guanidinderivate KW - Supramolekulare Chemie KW - Selbstassoziation KW - Bioorganik KW - supramolekulare Chemie KW - molekulare Erkennung KW - Self-Assembly KW - Bioorganic chemistry KW - supramolecular chemistry KW - molecular recognition Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-9272 ER - TY - THES A1 - Henn, Julian T1 - The electron density : a bridge between exact quantum mechanics and fuzzy chemical concepts T1 - Die Elektronendichte: Eine Brücke zwischen exakter Quantenmechanik und unscharfen chemischen Konzepten N2 - Summary The nature of the chemical bond is a topic under constant debate. What is known about individual molecular properties and functional groups is often taught and rationalized by explaining Lewis structures, which, in turn, make extensive use of the valence concept. The valence concept distinguishes between electrons, which do not participate in chemical interactions (core electrons) and those, which do (single, double, triple bonds, lone-pair electrons, etc.). Additionally, individual electrons are assigned to atomic centers. The valence concept is of paramount success: It allows the successful planning of chemical syntheses and analyses, it explains the behavior of individual functional groups, and, moreover, it provides the “language” to think of and talk about molecular structure and chemical interactions. The resounding success of the valence concept may be misleading to forget its approximative character. On the other hand, quantum mechanics provide in principle a quantitative description of all chemical phenomena, but there is no discrimination between electrons in quantum mechanics. From the quantum mechanical point of view there are only indistinguishable electrons in the field of the nuclei, i.e., it is impossible to assign a given electron to a particular center or to ascribe a particular purpose to individual electrons. The concept of indistinguishability of micro particles is founded on the Heisenberg uncertainty relation, which states, that wavepackets diverge in the 6N dimensional phase space, such that individual trajectories can not be identified. Hence it is a deep-rooted and approved physical concept. As an introduction to the present work density partitioning schemes were discussed, which divide the total molecular density into chemically meaningful areas. These partitioning schemes are intimately related to either the concepts of bound atoms in a molecule (as in the Atoms In Molecules theory (AIM) according to Bader or as in the Hirshfeld partitioning scheme) or to the concept of chemical structure in the sense of Lewis structures, which divide the total molecular density into core and valence density, where the valence density is split up again into bonding and non-bonding electron densities. Examples are early and recent loge theories, the topological analysis by means of the Electron Localization Function (ELF), and the Natural Bond Orbital (NBO) approach. Of these partitioning schemes, the theories according to Bader (AIM), to Becke and Edgecomb (ELF) and according to Weinhold (NBO and Natural Resonance Theory, NRT), respectively, were reviewed in detail critically. Points of criticism were explicated for each of the mentioned theories. Since theoretically derived electron densities are to be compared to experimentally derived densities, a brief introduction into the theory of X-ray di®raction experiments was given and the multipole formalism was introduced. The procedure of density refinement was briefly discussed. Various suggestions for improvements were developed: One strategy would be the employment of model parameters, which are to a maximum degree mutually orthogonal, with the object of minimizing correlations among the model parameters, e.g., to introduce nodal planes into the radial functions of the multipole model. A further suggestion involves the guidance of the iterative refinement procedure by an extremum principle, which states, that when di®erent solutions to the least squares minimization problem are available with about the same statistical measures of quality and with about the same residual density, then the solution is to prefer, which yields a minimum density at the bond critical point (BCP) and a maximum polarity in terms of the ratio of distances between the BCP and the nuclei. This suggestion is based on the well known fact, that the bond polarity (in terms of the ratio of distances between the BCP and the respective nuclei) is underestimated in the experiment. Another suggestion for including physical constraints is the explicit consideration of the virial theorem, e.g., by evaluating the integration of the Laplacian over the entire atomic basins and comparing this value to zero and to the value obtained from the integration of the electron gradient field over the atomic surface. The next suggestion was to explicitly use the electrostatic theorem of Feynman (often also denoted as Hellmann-Feynman theorem), which states, that the forces onto the nuclei can be calculated from the purely classical electrostatic forces of the electron distribution and the nuclei distribution. For a stationary system, these forces must add to zero. This also provides an internal quality criterion of the density model. This can be performed in an iterative way during the refinement procedure or as a test of the final result. The use of the electrostatic theorem is expected to reduce significantly correlations among static density parameters and parameters describing vibrations, since it is a valuable tool to discriminate between physically reasonable and artificial static electron densities. All of these mentioned suggestions can be applied as internal quality criteria. The last suggestion is based on the idea to initiate the experimental refinement with a set of model parameters, which is, as much as possible close to the final solution. This can be achieved by performing periodic boundary conditions calculations, from which theoretically created files are obtained, which contain the Miller indices (h, k, l) and the respective intensity I. This file is used for a model parameter estimation (refinement), which excludes vibrations. The resulting parameters can be used for the experimental refinement, where, in a first step, the density parameters are fixed to determine the parameters describing vibrations. For a fine tuning, again the electrostatic theorem and the other above mentioned suggestions could be applied. Theoretical predictions should not be biased by the method of computation. Therefore the dependence of the density analyzing tools on the level of calculation (method of calculation/basis set) and on the substituents in complex chemical bonding situations were evaluated in the second part of the present work. A number of compounds containing formal single and double sulfur nitrogen bonds was investigated. For these compounds, experimental data were also available. The calculated data were compared internally and with the experimental results. The internal comparison was drawn with regard to questions of convergency as well as with regard to questions of consistency: The resulting molecular properties from NBO/NRT analyses were found to be very stable, when the geometries were optimized at the respective level of theory. This stability is valid for variations in the methods of calculation as well as for variations in the basis set. Only the individual resonance weights of the contributing Natural Lewis Structures differed considerably depending on the level of calculation and depending on the substituents. However, the deviations were in both cases to a large extent within a limit which preserves the descending order of the leading resonance structure weights. The resulting bond orders, i.e., the total, covalent and ionic bond order from NRT calculations, were not affected by the shift in the resonance weights. The analysis of the bond topological parameters resulted in a discrimination between insensitive parameters and sensitive parameters. The stable parameters do neither depend strongly on the method of calculation nor on the basis set. Only minor variation occurs in the numerical values of these parameters, when the level of calculation is changed or even when other functional groups (H, Me, or tBu) are employed, as long as the methods of calculation do not drop considerably below a standard level. The bond descriptors of the sulfur nitrogen bonds were found to be also stable with respect to the functional groups R = H, R = Me, and R = tBu. Stable parameters are the bond distance, the density at the bond critical point (BCP) and the ratio of distances between the BCP and the nuclei A and B, which varies clearly when considering the formal bond type. For very small basis sets like the 3-21G basis set, this characteristic stability collapses. The sensitive parameters are based on the second derivatives of the density with respect to the coordinates. This is in accordance with the well known fact, that the total second derivative of the density with respect to the coordinates is a strongly oscillating function with positive as well as negative values. A profound deviation has to be anticipated as a consequence of strong oscillations. lambda3, which describes the local charge depletion in the direction of the interaction line, is the most varying parameter. A detailed analysis revealed that the position of the BCP in the rampant edge of the Laplacian distribution is responsible for the sensitivity of the numerical value of lambda3 in formal double bonds. Since the slope of the Laplacian assumes very high values in its rampant edge, a tiny displacement of the BCP leads already to a considerable change in lambda3. This instability is not a failure of the underlying theory, but it yields de facto to a considerable dependence of sensitive bond topological properties on the method of calculation and on the applied basis sets. Since the total second derivative is important to judge on the nature of the bond in the AIM theory (closed shell interactions versus shared interactions), the changes in lambda3 can lead to differing chemical interpretations. The comparison of theoretically derived bond topological properties of various sulfur nitrogen bonds provides the possibility to measure the self consistency of this data set. All data sets clearly exhibit a linear correlation between the bond distances and the density at the BCP on one hand and between the bond distances and the Laplacian values at the BCP on the other hand. These correlations were almost independent of the basis set size. In this context, the linear regression has to be regarded exclusively as a descriptive statistics tool. There is no correlation anticipated a priori. The formal bond type was found to be readily deducible from the theoretically obtained bond topological descriptors of the model systems. In this sense, the bond topological properties are self consistent despite of the numerical sensitivity of the derivatives, as exemplified above. Often, calculations are performed with the experimentally derived equilibrium geometries and not with optimized ones. Applying this approach, the computationally costly geometry optimizations are saved. Following this approach the bond topological properties were calculated using very flexible basis sets and employing the fixed experimental geometry (which, of course, includes the application of tBu groups). Regression coe±cients similar to those from optimized geometries were obtained for correlations between bond distances and the densities at the BCP as well as for the correlation between bond distances and the Laplacian at the BCP, i.e. the approach is valid. However, the data points scattered less and the coe±cient of correlation was clearly increased when geometry optimizations were performed beforehand. The comparison between data obtained from theory and experiment revealed fundamental discrepancies: In the data set of bond topological parameters from the experiment, the behavior of only 2 out of 3 insensitive parameters was comparable to the behavior of the theoretically obtained values, i.e. theoretical and experimental bond distances as well as theoretical and experimental densities at the BCP correlate. From the theoretically obtained data it was easy to deduce the formal bond type from the position of the BCP, since it changed in a systematic manner. The respective experimentally obtained values were almost constant and did not change systematically. For the SN bonds containing compounds, the total second derivative assumes exclusively negative values in the experiment. Due to the different internal behavior, experimentally and theoretically sensitive bond topological values could not be compared directly. The qualitative agreement in the Laplacian distribution, however, was excellent. In the third and last part of this work, the application to chemical systems follows. Formal hypervalent molecules, i.e. molecules where some atoms are considered to hold more than 8 electrons in their valence shell, were investigated. These were compounds containing sulfur nitrogen bonds (H(NtBu)2SMe, H2C{S(NtBu)2(NHtBu)}2, S(NtBu)2 and S(NtBu)3) and a highly coordinated silicon compound. The set of sulfur nitrogen compounds also contained a textbook example for valence expansion, the sulfur triimide. For these molecules, experimental reference values were available from high resolution X-ray experiments. The experimental results were in the case of the sulfur triimide not unique. Furthermore, from the experimental bond topological data no definite conclusion about the formal bonding type could be drawn. The situation of sulfur nitrogen bonds in the above mentioned set of molecules was analyzed in terms of a geometry discussion and by means of a topological analysis. The methyl-substituted isolated molecules served as model compounds. For the interpretation of the bonding situation additional NBO/NRT calculations were preformed for the sulfur nitrogen compounds and an ELF calculation and analysis was performed for the silicon compound. The ELF analysis included not only the presentation and discussion of the ELF-isosurfaces (eta = 0.85), but also the investigation of populations of disynaptic valence basins and the percentage contributions to these populations of the individual atoms when the disynaptic valence basins are split into atomic contributions according to Bader’s partitioning scheme. The question of chemical interest was whether hypervalency is present in the set of molecules or not. In the first case the octet rule would be violated, in the second case Pauling’s verdict would be violated. While the concept of hypervalency is well established in chemistry, the violation of Pauling’s verdict is not. The quantitative numbers of the sensitive bond topological values from theory and experiment were not comparable, since no systematic relationship between the experimentally and theoretically determined sensitive bond descriptors was found. However, the insensitive parameters are in good agreement and the qualitative Laplacian distribution is, with few exceptions, in excellent agreement. The formal bonding type was deduced from experimental and theoretical topological data by considering the number and shape of valence shell charge concentrations in proximity to the sulfur and nitrogen centers. The results from NBO/NRT calculations confirmed the findings. All employed density analyzing tools AIM, ELF and NBO/NRT coincided in describing the bonding situation in the formally hypervalent molecules as highly polar. A comparison and analysis of experimentally and theoretically derived electron densities led consistently to the result, that regarding this set of molecules, hypervalency has to be excluded unequivocally. N2 - Zusammenfassung Die Natur der chemischen Bindung ist ein viel und häufig auch sehr kontrovers diskutiertes Thema. In der Chemie werden Moleküleigenschaften und Eigenschaften funktionaler Gruppen oft anhand von Lewis-Strukturen rationalisiert. Lewis-Strukturen bauen auf dem Valenzkonzept auf, welches besagt, dass man zwischen Elektronen unterscheiden kann, die an chemischen Reaktionen nicht teilnehmen (Kernelektronen) und solchen, die sich z.B. als bindende Elektronen oder als nicht-bindende Elektronen an chemischen Prozessen beteiligen. Zusätzlich ermöglicht das Valenzkonzept die Zuordnung individueller Elektronen zu einzelnen atomaren Zentren im Molekül. Das Valenzkonzept ist sehr erfolgreich und überaus praktisch. Es erlaubt die zuverlässige Planung von chemischen Synthesen und Analysen, mit ihm lässt sich das charakteristische Verhalten funktioneller Gruppen erkl¨ ären. Das Valenzkonzept stellt eine Sprache bereit, in der es sich sehr gut über Molekülstrukturen und chemische Wechselwirkungen nachdenken und kommunizieren lässt. Der überwältigende Erfolg des Valenzkonzepts kann irrtümlich dazu verleiten dessen approximativen Charakter zu vergessen. In der Quantenmechanik hingegen, die eine physikalische Grundlage aller chemischen Prozesse darstellt und die im Prinzip alle chemischen Phänomene quantitativ beschreiben kann, gibt es keine Unterscheidungsmöglichkeit der Elektronen. Im Gegensatz zum Valenzkonzept geht die Quantenmechanik von ununterscheidbaren Elektronen aus, die sich im Feld der Kerne bewegen. Das bedeutet, dass es quantenmechanisch unmöglich ist individuelle Elektronen einzelnen Zentren oder bestimmten Aufgaben zuzuordnen. Die Ununterscheidbarkeit von Mikroteilchen beruht letztendlich auf der Heisenbergschen Unschärferelation, die besagt, dass Wellenpakete in einem 6N-dimensionalen Phasenraum (3N Ortskoordinaten und 3N Impulskoordinaten von N Teilchen) auseinanderlaufen, so dass im Gegensatz zur klassischen Mechanik keine Teilchen anhand ihrer individuellen Bahnen verfolgt und identifiziert werden k¨onnen. Im einleitenden ersten Teil der vorliegenden Arbeit wurden Analysemethoden vorgestellt, die die Partitionierung einer Gesamtelektronendichte in chemisch relevante Bereiche erlauben. Sie sind eng verknüpft entweder mit dem Konzept des im Molekül gebundenen Atoms (Baders Atoms in Molecules, AIM und Hirshfelds Partitionierungsschema) oder mit dem Konzept der chemischen Struktur im Sinne von Lewis-Strukturen, in denen die Gesamtdichte in Kern- und Valenzdichte unterteilt ist und diese wiederum in Bindungselektronendichte und nicht-bindende Elektronendichte. Beispiele hierfür sind frühe und auch aktuelle "Loge" Theorien, die topologische Analyse der Electron Localization Function (ELF) und die Natural Bond Orbital (NBO) Analyse. Aus den vorgestellten Partitionierungsschemata wurden die Theorien von Bader (AIM), Becke und Edgecomb (ELF) und Weinhold (NBO und Natural Resonance Theory, NRT) detaillierter vorgestellt und Kritikpunkte erläutert. Da in der vorliegenden Arbeit berechnete Elektronendichten mit experimentell bestimmten Elektonendichten verglichen werden, wurde eine kurze Einführung in Röntgenbeugungsexperimente und in das Multipolmodell gegeben. Es folgte eine kurze Beschreibung der Dichteverfeinerung und einige Verbesserungsorschläge: Eine mögliche Strategie mit dem Ziel, Korrleationen zwischen den Modellparametern zu minimieren, ist die Verwendung von Modellparametern, die zu einem maximalen Grade wechselseitig orthogonal sind. Ein Beispiel hierfür sind die Radialfunktionen des Multipolmodells, die zu einem erheblichen Teil denselben Raumbereich beschreiben, da sie keine Knotenflächen aufweisen. Mit der Einführung von Knortenflächen werden Korrelationen zwischen einzelnen Multipolpopulationen und Skalierungsfaktoren, sowie zwischen Schwingungen beschreibenden Parametern und Parametern, die die statische Elektronendichteverteilung beschreiben verringert. Ein weiterer Vorschlag beruht auf der Anwendung eines Extremalprinzips. Dieses tritt in Kraft, wenn es zu dem Kleinst-Quadrate Minimierungsproblem verschiedene Lösungen gibt, die sich anhand ihrer statistischen Gütemaße und ihrer Residualdichten nicht wesentlich unterscheiden. Das Extremalprinzip besagt, dass diejenige Lösung zu bevorzugen ist, die die kleinsten Dichtewerte am bindungskritischen Punkt ausfweist und die zugleich am stärksten polar ist. Die Polarität der Bindung wird in diesem Zusammenhang durch das Verhältnis der Abstände vom bindungskritschen Punkt zu den Kernorten ausgedrückt. Dieser Vorschlag beruht auf der bekannten Tatsache, dass experimentelle Ergebnisse eine Tendenz zum Unterschätzen der Bindungspolarität aufweisen. Eine weitere Möglichkeit zur Berücksichtigung physikalischer Randbedingungen ist die explizite Einbindung des Virialtheorems, d.h., die Integration der zweiten Ortsableitung über das atomare Bassin und die Integration des Elektronendichtegradienten auf der das Bader-Atom begrenzenden Fläche müssen beide identisch verschwinden. Die Abweichung voneinander und vom Wert Null kann als internes Gütekriterium des Dichtemodells dienen. Ein weiterer Vorschlag involviert das elektrostatische Theorem von Feynman, das oft auch Hellmann-Feynman Theorem genannt wird. Es besagt, dass die elektrostatischen Kräfte, die auf die Kerne im Molekül wirken ganz einfach klassisch berechnet werden dürfen und für eine stabile Born-Oppenheimer-Konfiguration der Kerne identisch verschwinden. Hiermit ergibt sich eine einfache Möglichkeit, eine gegebene statische Kern- und Elektronendichteverteilung auf ihre physikalische Plausibilität hin zu untersuchen. Dies kann iterativ im Verfeinerungsprozess geschehen oder als Test des finalen Modells. Darüberhinaus darf man von der Verwendung des elektrostatischen Theorems eine weitgehende Entkopplung von dichte- und schwingungsbeschreibenden Parametern erwarten, da im elektrostatischen Theorem statische Gleichgewichtsverteilungen vorausgesetzt wurden. Weiterhin könnten als Startwerte für die experimentelle Verfeinerung Modellparameter verwendet werden, die schon so nah wie möglich an der Lösung des Kleinst-Quadrate Problems liegen. Das wird erreicht, indem mit Berechnungen, die periodische Randbedingungen berücksichtigen, ein h, k, l, I-File erzeugt wird (also Reflexindizierung und Intensitäten), welches als Grundlage einer konventionellen hochauflösenden Verfeinerung verwendet wird. Der Vorteil dieses Files ist, dass es weder von Schwingungen noch von Rauschen berührt wird. Die resultierenden Modellparameter werden dann zur Verfeinerung eines Modells aufgrund der experimentellen h, k, l, I-Daten verwendet, wobei im ersten Schritt nur schwingungsbeschreibende Terme verfeinert werden. Wenn das Ergebnis noch nicht zufriedenstellend ist, können die oben genannten Verbesserungsvorschläge zur Feinabstimmung herangezogen werden. Im zweiten Teil der Arbeit wurde im Rahmen einer Evaluierungstudie die Methoden-, Basissatz-, und Substituentenabhängigkeit ausgewählter Analysewerkzeuge in der Beschreibung komplexer chemischer Bindungen untersucht. Als Testsysteme dienten eine Reihe von Schwefel Sticksto®verbindungen mit formalen Einfach- und Doppelbindungen, die zudem inter- und intramolekulare Wasserstoffbrückenbindungen ausbilden. Für diese Testsysteme liegen experimentelle Vergleichswerte vor. Die berechneten Daten wurden sowohl miteinander als auch mit den experimentell bestimmten Werten verglichen. Der interne Vergleich wurde sowohl im Hinblick auf Konvergenz- als auch auf Konsistenzfragen gezogen. Die berechneten Eigenschaften aus der NBO/NRT Analyse sind für auf dem jeweiligen Berechnungsniveau optimierte Molekülgeometrien generell sehr stabil, sowohl was die Basissatz- als auch die Methodenabhängigkeit betrifft. Eine Ausnahme sind die Resonanzgewichte der natürlichen Lewis-Strukturen aus NRT Rechnungen. Die numerischen Werte der Resonanzstrukturen zeigten zum Teil erheblich unterschiedliche Werte. Die Schwankungen sind jedoch weitgehend innerhalb der Grenze, die eine Vertauschung in der Reihenfolge der führenden Gewichte ausschließt. Die Bindungseigenschaften, wie z.B. die totale, kovalente und ionische Bindungsordnung sind von den Gewichtungsunterschieden nicht betroffen. Die Analyse der bindungstopologischen Daten führte zu einer Unterscheidung zwischen stabilen und sensitiven Parametern. Die stabilen Parameter sind in erster Näherung methoden- und basissatzunempfindlich. Sie variieren wenig, wenn Basissätze und Rechenmethoden gewechselt werden oder wenn bei der Berechnung unterschiedliche Substituenten verwendet werden, solange die verwendeten Methoden ein Standard-Niveau nicht unterscheiden. Mit Bezug auf die verschiedenen Substituenten R = H, Me und R = tBu haben sich die die Schwefel Stickstoffbindungen beschreibenden Parameter als unempfindlich herausgestellt. Die stabilen Parameter sind die Bindungslänge, die Dichte am bindungskritischen Punkt und das Verh¨altnis der Abstände des bindungskritischen Punktes zu den Kernen A und B der Bindungspartner, welche auffällig mit dem formalen Bindungstyp korrelieren. Für sehr kleine Basissätze, wie z.B. den 3-21G Basissatz, ist die Stabilität der Abstandsverhältnisse nicht mehr gegeben. Die sensitiven Parameter beruhen auf der zweiten Ortsableitung. Dies ist im Einklang mit der Tatsache, dass die zweite Ortsableitung eine stark oszillierende Funktion ist, weswegen für die zweite Ortsableitung größere numerische Schwankungen zu erwarten sind. Der am stärksten veränderliche Parameter ist lambda3. Eine genaue Analyse ergab, dass die Sensitivität von lambda3 in formalen Doppelbindungen auf die Lage des bindungskritischen Punktes in einer steilen Flanke der zweiten Ortsableitung zurückzuführen ist. Da die Steigung des Laplacewertes in der Flanke sehr groß wird, genügt schon eine winzige Verschiebung des bindungskritischen Punktes, um erhebliche Veränderungen im Wert von lambda3 herbeizuführen. Diese Instabilität darf nicht zu Kritik an der Theorie führen, jedoch verursacht sie de facto eine erhebliche Methoden- und Basissatzabhängigkeit der sensitiven topologischen Parameter. Da innerhalb der AIM-Theorie das Vorzeichen des Laplacewertes am bindungskritischen Punkt über die Natur der chemischen Wechselwirkung entscheidet (“closed-shell interactions” versus “shared interactions”) kann diese Interpretation sich von einem Berechnungsniveau zum anderen unterscheiden. Der Vergleich bindungstopologischer Daten von unterschiedlichen Schwefel Stickstoffbindungen, bietet die Möglichkeit zur Überprüfung der Konsistenz des Datensatzes. Die Datensätze zeigen eine lineare Korrelation zwischen den Bindungslängen und der jeweiligen Dichte am bindungskritischen Punkt sowie zwischen den Bindungslängen und der totalen zweiten Ableitung am bindungskritischen Punkt, nahezu unabhängig von der Güte der verwendeten Basissätze. Die lineare Regression ist hierbei lediglich als einfachste Anwendung deskriptiver Statistik zu betrachten und beinhaltet keine Modellbildung. Die bindungstopologischen Daten aus den Modellrechnungen lassen im Allgemeinen auf den zugrundeliegenden formalen Bindungstyp schließen. Es wurde festgestellt, dass die bindungstopologischen Daten aus den Modellrechnungen in diesem Sinne konsistent sind, trotz der oben genannten numerischen Instabilitäten der zweiten Ortsableitungen. In der Fachliteratur wird oft von Rechnungen berichtet, die mit der festgehaltenen experimentellen Gleichgewichtsgeometrie durchgef¨uhrt wurden, woduch die aufwendige Geometrioptimierung umgangen werden kann. Dieser Annäherung folgend, wurden die bindungstopologischen Eigenschaften der Schwefel Stickstoffverbindungen unter Benutzung von sehr flexiblen Basissätzen und bei festgehaltener experimenteller Geometrie berechnet. Die Regressionskoeffizienten betreffend die Korrelation zwischen Bindungsabstand und Dichte am b indungskritischen Punkt (BCP) sowie zwischen Bindungsabstand und Laplacewert am BCP waren denen von optimierten Geometrien sehr ähnlich, was die oben eingeführte Näherung rechtfertigt. Allerdings waren die Korrelationskoe±zienten bei gleichem Basissatz und bei gleicher Rechenmethode im Fall von zuvor optimierten Geometrien deutlich erhöht. Der Vergleich der Theoriewerte mit den experimentell erhaltenen Daten zeigt wesentliche Unterschiede zwischen beiden auf: Von den 3 stabilen Parametern aus der Analyse der theoretisch bestimmten Bindungscharakteristika erscheinen nur 2 auch in den experimentellen Daten als stabil, d.h., die theoretischen und experimentellen Bindungsabstände sowie die theoretischen und experimentellen Dichten am bindungskritischen Punkt korrelieren jeweils miteinander. Aus den theoretischen Daten (Verhältnis der Bindungspfadlängen vom bindungskritischen Punkt zu den Kernen der Bindungspartner) ließ sich der formale Bindungstyp leicht erschließen, während die entsprechenden Werte in den experimentell erhaltenen Daten keinen Rückschluss auf den formalen Bindungstyp erlaubten, da sie sich nicht systematisch änderten. Die totale zweite Ortsableitung der Dichte nimmt in den experimentellen Daten der Schwefel Stickstoffverbindungen ausschließlich negative Werte an. Durch diesen Unterschied im internen Verhalten der sensitiven Parameter am BCP konnte kein systematischer Zusammenhang zwischen diesen experimentell und theoretisch erhaltenen Werten gefunden werden. Die qualitative Übereinstimmung in der Verteilung der Laplacewerte war jedoch exzellent. Im dritten Teil der vorliegenden Arbeit folgen die Anwendungen auf chemische Fragestellungen. Es wurden formal hypervalente Moleküle, d.h.Verbindungen, in welchen manche Atome formal von mehr als 8 Valenzelektronen umgeben sind, untersucht. Es handelt sich um eine Reihe von Schwefel Sticksto®verbindungen (H(NtBu)2SMe, H2C{S(NtBu)2(NHtBu)}2, S(NtBu)2 und S(NtBu)3) und um eine Siliziumverbindung mit 6-fach koordiniertem Si. Unter den untersuchten Schwefel Stickstoffverbindungen ist auch ein Lehrbuchbeispiel für Valenzaufweitung, das Schwefeltriimid. Für diese Verbindungen lagen experimentelle Daten aus einer hochauflösenden Multipolverfeinerung vor. Der experimentelle Befund war besonders im Hinblick auf das Schwefeltriimid nicht eindeutig. Weiterhin konnte, wie bereits oben erwähnt von den bindungstopologischen Daten nicht auf den zugrundeliegenden formalen Bindungstyp geschlossen werden. Die Bindungssituation der interessierenden Schwefel Stickstoffbindungen wurde zunächst anhand der Geometrie und dann aufgrund der topologischen Eigenschaften der Elektronendichte diskutiert. Die methylsubstituierten isolierten Moleküle dienten dabei als Modell. Zur Interpretation der SN Bindungssituation wurden zusätzlich NBO/NRT Berechnungen durchgeführt und für die hochkoordinierte Siliziumverbindung wurden zusätzlich ELF Berechnungen angewendet. Die ELF Analyse umfasste nicht nur die Berechnung und Darstellung von ELF-Isofl ächen (eta = 0.85), sondern auch die Berechnung und Aufteilung der Elektronenpopulation der disynaptischen Valenzbassins, wobei zur Aufteilung das Partitionierungsschema von Bader verwendet wurde. Die chemisch relevante Fragestellung war dabei ob bei den betrachteten Molekülen Hypervalenz vorliegt oder nicht. Im Falle vorliegender Hypervalenz wäre die Oktettregel verletzt, wenn keine Hypervalenz vorliegen würde müssten formale Ladungen eingeführt werden, was eine Verletzung des Verdiktes von Pauling darstellt. Wie oben beschrieben, konnten die empfindlichen bindungstopologischen Werte von Theorie und Experiment nicht direkt miteinander verglichen werden, da kein systematischer Zusammenhang zwischen ihnen zu bestehen scheint. Die unempfindlichen Parameter waren jedoch in guter Übereinstimmung und die qualitative Laplaceverteilung in den meisten Fällen exzellent. Der formale Bindungstyp wurde aus den experimentell und theoretisch zugänglichen Daten abgeleitet, indem die Anzahl und Lage der Valenzschalen-Ladungskonzentrationen (Valence shell charge concentrations, VSCC) in der Umgebung der Schwefel und Stickstoffkerne beschrieben und verglichen wurde. Die Berechnungen an den Modellsystemen bekräftigten den Befund. Alle Methoden, die zur Analyse der Dichte herangezogen wurden, namentlich die AIM Theorie, die ELF Analyse, die NBO und die NRT Berechnungen führten übereinstimmend zu dem Ergebnis, dass die betreffenenden Bindungen als zu einem hohen Grad polar zu beschreiben sind. Der Vergleich und die Analyse von theoretischen und experimentellen Dichten führte damit gleichermaßen zu dem Ergebnis, dass Hypervalenz in dem betrachteten Satz von Molekülen definitiv ausgeschlossen werden muss. KW - Elektronendichtebestimmung KW - Vergleich KW - Chemische Bindung KW - Theorie KW - Elektronendichte KW - topologische Analyse KW - Dichtebestimmung in Theorie und Experiment KW - Electron density KW - topological analysis KW - experimental and theoretical determination of electron density Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-9003 ER - TY - THES A1 - Hupp, Thomas T1 - Ab Initio Treatment of Complex Systems Kohn-Sham Orbitals for Multi Reference Methods and the Base Pairing Properties of Xanthine T1 - Ab initio Behandlung komplexer Systeme Kohn-Sham Orbitale für Multireferenzverfahren und die Basenpaarungseigenschaften von Xanthin N2 - Die vorliegende Arbeit besteht aus zwei Teilen. Der erste untersucht die Eignung von LHF-Orbitalen für Multireferenzverfahren. Das Ziel dieses Teils ist eine effizientere Berechnung angeregter Zustände, was zur spektroskopischen Charakterisierung vieler organischer und bioorganischer Moleküle wichtig ist. Der zweite Teil befasst sich mit bioorganischen Fragestellungen und untersucht die Paarungseigenschaften der Purinbase Xanthin. Es wird unter anderem die unerwartet hohe Stabilität der Xanthin Selbstpaarung in Alanyl-PNA erklärt und es wird untersucht, auf welche Weise Xanthin in der DNA mutagene Fehlpaarungen mit Thymin eingehen kann. Teil1: Im Unterschied zu HF- und Standard-DFT-Methoden führt der LHF-Ansatz zu einem vollständig gebundenen Orbitalspektrum, da Coulomb-Selbstwechselwirkungen im LHF-Ansatz exakt korrigiert werden. Durch die Korrektur der Coulomb-Selbstwechselwirkungen sind im LHF-Ansatz auch die Energien der besetzten Orbitale nicht wie in Standard-DFT-Methoden zu höheren Werten verschoben, so dass das Koopmans' Theorem gültig bleibt und die besetzten LHF-Orbitale etwas kompakter als Standard-DFT-Orbitale sind. Die vorliegende Arbeit zeigt, dass beide Eigenschaften deutliche Vorteile für MR-Verfahren darstellen. Die virtuellen LHF-Orbitale sind gut optimiert und erlauben eine effizienteBeschreibung sowohl angeregter Zustände als auch statischer Korrelationseffekte in MRCI und MRPT2-Ansätzen. Weiterhin führt die kompaktere Struktur der besetzten LHF-Orbitale zu einer besseren Beschreibung des kationischen Rumpfes von Rydbergzuständen. Andererseits wurden zu beiden genannten Vorteilen auch jeweils ein Beispielmolekül gefunden, in dem die Vorteile nicht zum Tragen kommen, und zu deren Beschreibung Orbitale aus HF- oder Standard-DFT-Methoden besser geeignet sind. Diese Beispiele zeigen, dass jeder Einzelfall für sich getestet werden muss, auch wenn die angeregten Zustände der meisten Moleküle sehr gut mit LHF-Orbitalen beschrieben werden können. Teil 2: Im zweiten Teil der vorliegenden Arbeit wurden die Paarungseigenschaften von Xanthin und Xanthinderivaten untersucht. Ziel dieses Teils war es, eine Erklärung für die unerwartet hohe Stabilität des Xanthin Alanyl-PNA Selbstpaarung zu finden. Weiterhin wurde untersucht, weshalb Xanthin, das in der DNA u.a. unter chemischem Stress gebildet wird, mutagene Fehlpaarungen mit der Pyrimidinbase Thymin eingehen kann. Stabilität der Xanthin Alanyl PNA: Zunächst wurde durch den Vergleich experimenteller und berechneter 13C-NMR-Spektra das Regiosomer von Xanthin bestimmt, welches zu der ungewöhnlich hohen Stabilität der Xanthin-Xanthin-Selbstpaarung in Alanyl-PNA verantwortlich ist. Zur Untersuchung der Stabilität der Xanthin-Selbstpaarung wurde ein stark vereinfachendes Modell aufgestellt,in dem die Stabilit� at der PNA-Duplexe nur über die Energiebeiträge aus den Wasserstoffbrücken (EDim) und der Basenstapelung (EStap) bestimmt wird. Die Dimerisierungs- und Stapelungsenergien unterschiedlicher Paarungen wurden mit DFT- und MP2-Methoden bestimmt. Solvenseffekte wurden über ein Kontinuummodell erfasst und der Einfluss des peptidischen Rückgrats auf die Stapelungsgeometrie wurde durch Kraftfeldmethoden berücksichtigt. Während die einzelnen Energiekomponenten aus den H-Br� ucken und der Basenstapelung keinen eindeutigen Zusammenhang zu den Schmelztemperaturen erkennen lassen, korreliert die Summe aus beiden linear mit den experimentell ermittelten Tm-Werten. Dies bedeutet, dass die Beiträge aus der Entropie, der molekularen Wasserumgebung und der Rückgratspannung sich entweder aufheben oder f� ur alle behandelten Systeme sehr ähnlich sind. Die Stabilität der Xanthin-Xanthin- und die der 2,6-Diaminopurin-Xanthin-Paarung, ergibt sich durch einen erhöhten Stapelungsbeitrag der Purinpaarungen, während die Wasserstoffbrücken der Xanthin Selbstpaarung nur wenig zur Stabilisierung des Xanthin-Xanthin und des Xanthin-Diaminopurin-Alanyl-PNA-Doppelstrangs beitragen. Paarungseigenschaften von N9-Xanthin: Zur Untersuchung der Paarungseigenschaften von N9-Xanthin wurden zun� achst H-verbrückte Homodimere von Xanthin untersucht. Hierbei wurden extreme Variationen in den Bindungsstärken der einzelnen H-Brücken gefunden, die sich zwischen -4 bis -11 kcal/mol in der Gasphase und -2.5 bis -5 kcal/mol im Solvens betragen. Durch Vergleich mit Modellsystemen konnte die starke Varianz der H-Brückenstärke auf anziehende bzw. abstoßende sekundäre elektrostatische Wechselwirkungen zurückgeführt werden. Weiterhin wurde das Homodimer von Hypoxanthin untersucht, bei dem die H-Brücken durch eine Erhöhung der Aromatizität im Pyrimidinring zusätzlich verstärkt werden, was zu einer deutlichen Stabilisierung des Dimers führt. Elektronische Effekte müssen vor allem deshalb berücksichtigt werden, da sie im Unterschied zu rein elektrostatischen Effekten deutlich weniger von der Solvensumgebung beein usst werden. Mutagenität von Hypoxanthin und Xanthin: Zur Erklärung der Mutagenität von Hypoxanthin und Xanthin wurden verschiedene neutrale und anionische Watson-Crick Basenpaarungen von Hypoxanthin und Xanthin mit Pyrimidinbasen berechnet. Hierbei wurden u. a. auch tautomere und anionische Formen von Xanthin berücksichtigt. Zur Bewertung der erhaltenen Dimerisierungsenergien wurden die Paarungen danach klassifiziert, ob ihre Geometrien mit denen der kanonischen Basenpaarungen deckungsgleich sind, oder ob sie in einer verzerrten Watson-Crick Geometrie vorliegen, was die Einbaurate in die DNA aufgrund des räumlichen Anspruchs der DNA-Polymerase vermindert. Die Rechnungen zeigen, dass Xanthin nur mit Cytosin Watson-Crick-Paarungen eingehen kann, welche jedoch nur sehr schwach gebunden sind. In der neutralen Form scheint eine dreizähnige Basenpaarung unter Beteiligung einer tautomeren Form des Xanthins etwas stabiler zu sein als die zweizähnige Paarung von Diketoxanthin mit Cytosin. Da die Dimerisierungsenergie sowohl der neutralen als auch der anionischen Basenpaarung nur wenig unter 0 kcal/mol liegt, ist der Einbau der Xanthin-Cytosin-Paarung in die DNA zwar aufgrund der günstigen Geometrie möglich, wird aber nicht durch einen Energiebeitrag aus den H-Brücken verstärkt. Die im Vergleich zur Guanin-Cytosin Paarung deutlich geringere Aromatizität von Xanthin zu Cytosin ist im Einklang mit dem experimentellen Befund, dass die Cytosin-Xanthin Paarung deulich langsamer als die Guanin-Cytosin Paarungen in die DNA eingebaut werden. Während die Rechnungen nur eine geringe Aromatizität von Xanthin zu Cytosin vorhersagen, scheint das Anion von Xanthin in der Lage zu sein, eine sehr stabile Basenpaarung mit Thymin einzugehen. Allerdings muss die Dimerisierungsenergie die schlechtere Anpassung in die Bindungstasche der DNA-Polymerase ausgleichen, da die Paarung in einer etwas verzerrten Watson-Crick Geometrie vorliegt. Insgesamt wird die Paarung daher nicht schneller in die DNA eingebaut, wie erwartet aufgrund der H-Brückenstärken, stattdessen besitzt sie eine ähnliche Einbaurate wie die geometrisch günstigere aber weniger stabile Xanthin-Cytosin Paarung. N2 - The present work consists of two parts. The first one deals with theoretical questions and tests the performance of orbitals obtained from a self-interaction free KS method, the LHFapproach, in multireference ab initio methods. The purpose of this part is to enable a more efficient computation of excitation energies, which is important for the spectroscopic characterization of many organic and bioorganic molecules. The second part focuses on bioorganic questions and studies the base pairing properties of the purine base xanthine in order to explain, e.g., the unusually high stability of selfpairing xanthine alanyl-PNA double strands and the mutagenicity of xanthine formed in DNA. Part1: In contrast to HF- and standard DFT-methods, the LHF-approach leads to a fully bound virtual orbital spectrum, because Coulomb self interactions are exactly canceled in the LHFansatz. Furthermore, the energies of the occupied orbitals are not upshifted, like it is the case for standard DFT-methods, so that Koopmans' theorem remains valid. In line with this, also the occupied LHF-orbitals are somewhat more compact than standard DFT-orbitals. The present work shows that both properties are of great benefit for MR methods. The virtual LHF-orbitals are well optimized and allow an efficient description of excited states and static correlation in both MRCI- and MRPT2-approaches. Furthermore, the higher compactness of the occupied LHF- compared to standard DFT-orbitals leads to a better description of the center ion of Rydberg states. However, for each of the two advantages mentioned at least one example molecule has been found, for which LHF-orbitals actually perform worse than HF-and/or standard DFT-orbitals. This shows, that even though LHF virtual orbitals allow an excellent MRCI- and MRPT2-description for the electronically excited states of a large number of molecules, this cannot be generalized and their performance needs to be tested for each individual case. In the second part of the present work, the base pairing properties of xanthine and xanthine derivatives were studied. The purpose of this part was to find an explanation for the unexpectedly high stability of the xanthine alanyl PNA double strand. Furthermore, it was analyzed, why xanthine, that is formed from guanine in DNA under chemical stress, is able to form mismatched base pairs with the pyrimidine base thymine. Stability of xanthine alanyl PNA: In the first step, the regioisomer present in the considered alanyl PNA was identified to be the N7-regioisomer of xanthine by a theoretical analysis of the 13C-NMR spectrum. To analyze the stability of the xanthine self-pairing, a simplified model was set up, in which the stability of the PNA double strand was explained solely by the energy contributions from H-bonding and base stacking. For that purpose, the dimerization and stacking energies for the xanthine-xanthine, guaninecytosine, adenine-thymine and xanthine-2,6-diaminopurine base pairs were computed using DFT and MP2 methods. Solvent effects were taken into account by the conductor like screening model. The influence of the peptide backbone on the stacking geometry was considered by force field optimizations. While the individual contributions from hydrogen bonding and stacking do not correlate with the melting temperature Tm, the sum of both correlates linearly with Tm. This correlation is somewhat surprising, because this means that the effects of the entropy and the molecular water environment either cancel or are similar for all systems compared. In this model, the stability of the xanthine selfpairing mainly stems from an enlarged stacking interaction, while the H-bonds give only minor contributions to the stability of the xanthine selfpaired double strand of alanyl-PNA. Base pairing properties of N9-Xanthine: The computation of the base pairing properties of N9-xanthine revealed a strong variation in the individual H-bond strengths for the selfpairing of xanthine, that range from -4 to -11 kcal/mol in the gas phase and -2.5 to -5 kcal/mol in polar solvent. By comparison with model systems it was shown that the strong variance of the H-bond strength is mainly due to attractive or repulsive secondary electrostatic interactions. For the homodimer of hypoxanthine it was shown that the increase of aromaticity in the pyrimidine ring upon dimer formation leads to a strengthening of the hydrogen bonds. Mutagenicity of hypoxanthine and xanthine: Several neutral and anionic Watson-Crick base pairs of xanthine were computed with MP2- and DFT-methods in order to explain the mutagenicity of hypoxanthine and xanthine. Also basepairs involving tautomeric forms of xanthine and hypoxanthine were considered. To evaluate the dimerization energies found, the dimers were classified into pairings that have the exact geometry of the canonical base pairs and those that realize a distorted Watson-Crick pairing mode. The computations show that a stable pairing which realizes the exact geometry of a canonical Watson Crick base pairing is only possible for the pairing of xanthine to cytosine, however, the base pairs are only weakly bound. The dimerization energies of both the neutral and the anionic pairing is around 0 kcal/mol, so that the xanthine-cytosine base pairs are incorporated into DNA solely because the base pairs fulfill the geometric demands of DNA polymerase, but it does not profit from any additional stabilization due to hydrogen bonding. The bonding that in the Watson-Crick pairing mode xanthine has almost no affinity to cytosine is in correspondence with the experimental result that the cytosine-xanthine base pair is incorporated into DNA at a much lower rate than the cytosine-guanine base pair, which has a very strong hydrogen bonding. While the affinity of xanthine to cytosine is very low, the computations predict that xanthine is able to form a stable Watson-Crick pairing with thymine. However, the pairing has a somewhat distorted Watson-Crick geometry, so that its high stability is outbalanced by the worsened fit to the binding pocket of DNA-polymerase. As a consequence, the xanthinethymine pairing is incorporated into DNA not at a faster, but only at a rate comparable to that of the xanthine-cytosine pairing. KW - Kohn-Sham Orbitale KW - MRCI KW - angeregte Zustände KW - Basenpaarung KW - Xanthin KW - Kohn-Sham Orbitals KW - MRCI KW - excited states KW - Base pairing KW - xanthine Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8244 ER -