TY - JOUR A1 - Mamontova, Victoria A1 - Trifault, Barbara A1 - Boten, Lea A1 - Burger, Kaspar T1 - Commuting to work: Nucleolar long non-coding RNA control ribosome biogenesis from near and far JF - Non-Coding RNA N2 - Gene expression is an essential process for cellular growth, proliferation, and differentiation. The transcription of protein-coding genes and non-coding loci depends on RNA polymerases. Interestingly, numerous loci encode long non-coding (lnc)RNA transcripts that are transcribed by RNA polymerase II (RNAPII) and fine-tune the RNA metabolism. The nucleolus is a prime example of how different lncRNA species concomitantly regulate gene expression by facilitating the production and processing of ribosomal (r)RNA for ribosome biogenesis. Here, we summarise the current findings on how RNAPII influences nucleolar structure and function. We describe how RNAPII-dependent lncRNA can both promote nucleolar integrity and inhibit ribosomal (r)RNA synthesis by modulating the availability of rRNA synthesis factors in trans. Surprisingly, some lncRNA transcripts can directly originate from nucleolar loci and function in cis. The nucleolar intergenic spacer (IGS), for example, encodes nucleolar transcripts that counteract spurious rRNA synthesis in unperturbed cells. In response to DNA damage, RNAPII-dependent lncRNA originates directly at broken ribosomal (r)DNA loci and is processed into small ncRNA, possibly to modulate DNA repair. Thus, lncRNA-mediated regulation of nucleolar biology occurs by several modes of action and is more direct than anticipated, pointing to an intimate crosstalk of RNA metabolic events. KW - long non-coding RNA KW - RNA polymerase II KW - nucleolus KW - ribosome biogenesis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242756 SN - 2311-553X VL - 7 IS - 3 ER - TY - THES A1 - Hofstetter, Julia Eva Ines T1 - MYC shapes the composition of RNA polymerase II through direct recruitment of transcription elongation factors T1 - MYC beeinflusst die Zusammensetzung der RNA-Polymerase II durch die direkte Rekrutierung von Transkriptions-Elongationsfaktoren N2 - The transcription factor MYC is a onco-protein, found to be deregulated in many human cancers. High MYC levels correlate with an aggressive tumor outcome and poor survival rates. Despite MYC being discovered as an oncogene already in the 1970s, how MYC regulates transcription of its target genes, which are involved in cellular growth and proliferation, is not fully understood yet. In this study, the question how MYC influences factors interacting with the RNA polymerase II ensuring productive transcription of its target genes was addressed using quantitative mass spectrometry. By comparing the interactome of RNA polymerase II under varying MYC levels, several potential factors involved in transcriptional elongation were identified. Furthermore, the question which of those factors interact with MYC was answered by employing quantitative mass spectrometry of MYC itself. Thereby, the direct interaction of MYC with the transcription elongation factor SPT5, a subunit of the DRB-sensitivity inducing factor, was discovered and analyzed in greater detail. SPT5 was shown to be recruited to chromatin by MYC. In addition, the interaction site of MYC on SPT5 was narrowed down to its evolutionary conserved NGN-domain, which is the known binding site for SPT4, the earlier characterized second subunit of the DRB-sensitivity inducing factor. This finding suggests a model in which MYC and SPT4 compete for binding the NGN-domain of SPT5. Investigations of the SPT5-interacting region on MYC showed binding of SPT5 to MYC’s N-terminus including MYC-boxes 0, I and II. In order to analyze proteins interacting specifically with the N-terminal region of MYC, a truncated MYC-mutant was used for quantitative mass spectrometric analysis uncovering reduced binding for several proteins including the well-known interactor TRRAP and TRRAP-associated complexes. Summarized, ... N2 - Bei dem Transkriptionsfaktor MYC handelt es sich um ein Onkoprotein, welches in einer Vielzahl der menschlichen Krebserkrankungen in erhöhter Konzentration vorliegt, was wiederum mit einem schweren Krankheitsverlauf einhergeht. Bereits in den 1970iger Jahren wurde das Protein MYC als ein Onkoprotein identifiziert, aber wie es die Transkription seiner großen Bandbreite an Zielgenen, welche für Zellwachstum und -proliferation verantwortlich sind, reguliert, ist bisher noch nicht eindeutig geklärt. In dieser Arbeit wurde die zentrale Frage untersucht, wie MYC die Proteine beeinflusst, die mit der RNA-Polymerase II interagieren, um dadurch eine schnelle und produktive Transkription seiner Zielgene zu ermöglichen. Hierfür wurden mittels der Durchführung massenspektrometrischer Untersuchungen Proteine, die in der An- und Abwesenheit von MYC mit der RNA-Polymerase II interagieren, identifiziert, was eine MYC-bedingte Änderung einiger Elongationsfaktoren im Interaktom der RNA-Polymerase II aufzeigte. Des Weiteren wurden ebenfalls unter Zuhilfenahme massenspektrometrischer Analysen Proteine bestimmt, die mit MYC selbst interagieren. Hierdurch konnte die bisher unbeschriebene, direkte Interaktion zwischen MYC und SPT5, der großen Untereinheit des DRB-sensitivity inducing factors, aufgedeckt und näher analysiert werden. Es konnte gezeigt werden, dass MYC SPT5 zum Chromatin rekrutiert. Weiter konnte nachgewiesen werden, dass MYC mit der evolutionär konservierten NGN-Domäne von SPT5 interagiert, an welche auch SPT4, die zweite Untereinheit des DRB-sensitivity inducing factors, bindet. Dies resultiert in dem Modell, dass MYC mit SPT4 um die Bindestelle auf SPT5 konkurriert und durch dieses ersetzt werden kann. Die Nähere Untersuchung der Bindestelle von SPT5 auf MYC zeigte eine Binderegion im N-terminalen Bereich von MYC auf, der die MYC-Boxen 0, I und II miteinschließt. Um Proteine zu identifiziert, die selektiv mit dem N-terminalen Bereich von MYC interagieren, ... KW - Transkription KW - Myc KW - MYC KW - DSIF KW - Transcription KW - Cancer KW - RNA polymerase II Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240358 ER - TY - JOUR A1 - Hennig, Thomas A1 - Djakovic, Lara A1 - Dölken, Lars A1 - Whisnant, Adam W. T1 - A Review of the Multipronged Attack of Herpes Simplex Virus 1 on the Host Transcriptional Machinery JF - Viruses N2 - During lytic infection, herpes simplex virus (HSV) 1 induces a rapid shutoff of host RNA synthesis while redirecting transcriptional machinery to viral genes. In addition to being a major human pathogen, there is burgeoning clinical interest in HSV as a vector in gene delivery and oncolytic therapies, necessitating research into transcriptional control. This review summarizes the array of impacts that HSV has on RNA Polymerase (Pol) II, which transcribes all mRNA in infected cells. We discuss alterations in Pol II holoenzymes, post-translational modifications, and how viral proteins regulate specific activities such as promoter-proximal pausing, splicing, histone repositioning, and termination with respect to host genes. Recent technological innovations that have reshaped our understanding of previous observations are summarized in detail, along with specific research directions and technical considerations for future studies. KW - herpes simplex virus KW - RNA polymerase II KW - transcription KW - host shutoff KW - promoter-proximal pausing KW - C-terminal domain KW - polyadenylation KW - splicing Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246165 SN - 1999-4915 VL - 13 IS - 9 ER - TY - THES A1 - Wedel, Carolin T1 - The impact of DNA sequence and chromatin on transcription in \(Trypanosoma\) \(brucei\) T1 - Der Einfluss der DNA-Sequenz und der Chromatinstruktur auf die Transkription in \(Trypanosoma\) \(brucei\) N2 - For cellular viability, transcription is a fundamental process. Hereby, the DNA plays the most elemental and highly versatile role. It has long been known that promoters contain conserved and often well-defined motifs, which dictate the site of transcription initiation by providing binding sites for regulatory proteins. However, research within the last decade revealed that it is promoters lacking conserved promoter motifs and transcribing constitutively expressed genes that constitute the majority of promoters in eukaryotes. While the process of transcription initiation is well studied, whether defined DNA sequence motifs are required for the transcription of constitutively expressed genes in eukaryotes remains unknown. In the highly divergent protozoan parasite Trypanosoma brucei, most of the proteincoding genes are organized in large polycistronic transcription units. The genes within one polycistronic transcription unit are generally unrelated and transcribed by a common transcription start site for which no RNA polymerase II promoter motifs have been identified so far. Thus, it is assumed that transcription initiation is not regulated but how transcription is initiated in T. brucei is not known. This study aimed to investigate the requirement of DNA sequence motifs and chromatin structures for transcription initiation in an organism lacking transcriptional regulation. To this end, I performed a systematic analysis to investigate the dependence of transcription initiation on the DNA sequence. I was able to identify GT-rich promoter elements required for directional transcription initiation and targeted deposition of the histone variant H2A.Z, a conserved component during transcription initiation. Furthermore, nucleosome positioning data in this work provide evidence that sites of transcription initiation are rather characterized by broad regions of open and more accessible chromatin than narrow nucleosome depleted regions as it is the case in other eukaryotes. These findings highlight the importance of chromatin during transcription initiation. Polycistronic RNA in T. brucei is separated by adding an independently transcribed miniexon during trans-splicing. The data in this work suggest that nucleosome occupancy plays an important role during RNA maturation by slowing down the progressing polymerase and thereby facilitating the choice of the proper splice site during trans-splicing. Overall, this work investigated the role of the DNA sequence during transcription initiation and nucleosome positioning in a highly divergent eukaryote. Furthermore, the findings shed light on the conservation of the requirement of DNA motifs during transcription initiation and the regulatory potential of chromatin during RNA maturation. The findings improve the understanding of gene expression regulation in T. brucei, a eukaryotic parasite lacking transcriptional Regulation. N2 - Die Transkription ist ein entscheidender Prozess in der Zelle und die DNA-Sequenz nimmt hierbei eine elementare Rolle ein. Promotoren beinhalten spezifische und konservierte DNASequenzen und vermitteln den Start der Transkription durch die Rekrutierung spezifischer Proteine. Jedoch haben Forschungen im vergangenen Jahrzehnt gezeigt, dass die Mehrzahl der Promotoren in eukaryotischen Genomen keine konservierten Promotormotive aufweisen und häufig konstitutiv exprimierte Gene transkribieren. Obgleich der Prozess der Transkriptionsinitiation im Allgemeinen gut erforscht ist, konnte bisher nicht nachgewiesen werden, ob ein definiertes DNA-Motiv während der Transkription von konstitutiv exprimierten Genes erforderlich ist. In dem eukaryotischen und einzelligen Parasiten Trypanosoma brucei ist die Mehrzahl der proteinkodierenden Gene in lange polycistronische Transkriptionseinheiten arrangiert. Diese werden von einem gemeinsamen Transkriptionsstart durch die RNA Polymerase II transkribiert, allerdings konnten hier bisher keine Promotormotive identifiziert werden. Aus diesem Grund besteht die Annahme, dass Transkription keiner Regulation unterliegt. Allgemein ist der Prozess der Transkriptionsinitiation in T. brucei bisher nur wenig verstanden. Um den Zusammenhang zwischen DNA-Motiven und konstitutiver Genexpression näher zu untersuchen und Schlussfolgerungen über die DNA-Sequenz-Abhängigkeit der Transkriptionsinitiation zu ziehen, habe ich eine systematische Analyse in T. brucei durchgeführt. Ich konnte GT-reiche Promotorelemente innerhalb dieser Regionen identifizieren, die sowohl eine gerichtete Transkriptionsinitiation, als auch den gezielten Einbau der Histonvariante H2A.Z in Nukleosomen nahe der Transkriptionsstartstelle vermittelt haben. Des Weiteren zeigten Nukleosomenpositionierungsdaten, dass in Trypanosomen die Transkripitonsstartstellen nicht die charakteristische, nukleosomendepletierte Region, wie für andere Organismen beschrieben, sondern eine offene Chromatinstruktur enthalten. Zusätzlich konnte ich zeigen, dass die Chromatinstruktur eine wichtige Rolle während der mRNAProzessierung spielt. In T. brucei wird die polycistronische pre-mRNA durch das Anfügen eines Miniexons während des sogenannten trans-Splicens in individuelle mRNAs aufgetrennt. Die Daten dieser Arbeit belegen, dass die Anreicherung von Nukleosomen eine Verlangsamung der transkribierenden Polymerase bewirken und sie somit die richtige Wahl der Splicestelle gewährleisten. Zusammenfassend wurde in dieser Arbeit die Rolle der DNA Sequenz während der Transkriptionsinitiation und Nukleosomenpositionierung in einem divergenten Eukaryoten untersucht. Die Erkenntnisse bringen mehr Licht in die Konservierung der Notwendigkeit eines DNA-Motivs während der Transkriptionsinitiation und das regulatorische Potential der Chromatinstruktur während der RNA-Reifung. Zudem verbessern sie das Verständnis der Genexpressionsregulation in T. brucei, einem eukaryotischen Parasiten, der ohne transkriptionelle Regulation überlebt. KW - Transkription KW - Chromatin KW - Trypanosoma brucei KW - Genexpression KW - Epigenetik KW - RNA polymerase II KW - splicing KW - nuclesosome positioning Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173438 ER - TY - JOUR A1 - Rutkowski, Andrzej J. A1 - Erhard, Florian A1 - L'Hernault, Anne A1 - Bonfert, Thomas A1 - Schilhabel, Markus A1 - Crump, Colin A1 - Rosenstiel, Philip A1 - Efstathiou, Stacey A1 - Zimmer, Ralf A1 - Friedel, Caroline C. A1 - Dölken, Lars T1 - Widespread disruption of host transcription termination in HSV-1 infection JF - Nature Communications N2 - Herpes simplex virus 1 (HSV-1) is an important human pathogen and a paradigm for virus-induced host shut-off. Here we show that global changes in transcription and RNA processing and their impact on translation can be analysed in a single experimental setting by applying 4sU-tagging of newly transcribed RNA and ribosome profiling to lytic HSV-1 infection. Unexpectedly, we find that HSV-1 triggers the disruption of transcription termination of cellular, but not viral, genes. This results in extensive transcription for tens of thousands of nucleotides beyond poly(A) sites and into downstream genes, leading to novel intergenic splicing between exons of neighbouring cellular genes. As a consequence, hundreds of cellular genes seem to be transcriptionally induced but are not translated. In contrast to previous reports, we show that HSV-1 does not inhibit co-transcriptional splicing. Our approach thus substantially advances our understanding of HSV-1 biology and establishes HSV-1 as a model system for studying transcription termination. KW - herpes simplex virus KW - RNA polymerase II KW - gene expression KW - alpha-globin KW - motif discovery KW - regulatory protein ICP27 KW - poly(A) site usage KW - pre-messenger RNA KW - splicing inhibition KW - type 1 ICP27 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148643 VL - 6 IS - 7126 ER -