TY - THES A1 - Paunescu, Karina T1 - DNA-Stabilität und Thioredoxin/Thioredoxin Reduktase im Zellkern T1 - DNA-Stability and thioredoxin/thioredoxin reductase in nucleus N2 - Das System Thioredoxin /Thioredoxin Reduktase(Trx/TrxR) ist ein sehr versatiles System zur neutralisation reaktiver Sauerstoffspezies, zur Regulation redox-sensitiver Vorgänge und zur Aktivierung von Transkriptionsfaktoren wie Steroidhormonrezeptoren, AP-1 und NFkB. Das Enzym Thioredoxin Reduktase war zunächst nur als zytosolisches Enzym beschrieben, es ist mittlerweile bekannt, dass es z. B. nach Phorbolester-Stimulation auch sezeniert werden kann. Adäquate Stimuli für die nucläere Translokation von Trx sind z. B. UV-Licht und TNF-Signalling. Zudem wurde in der vorhandenen Arbeit anhand transienter Transfektion und immunhistochemischer Untersuchungen nachgewiesen, dass beide Komponenten des Systems auch im Zellkern präsent sind. Ein Teil er Arbeit stellt die Charakteriesierung der subzellulären Lokalisation zweier Isoformen von Thioredoxin Reduktase 1 mit unterschiedlichem N-Terminus dar. Es konnte gezeigt werden, dass die beiden Isoformen als mRNA und Protein vorhanden sind. Es wurde dann die Interaktion des Enzyms Thioredoxin Reduktase mit anderen Komponenten des Zellkerns, hier speziell mit Enzymen der DNA-Prozessierung untersucht. Zudem wurde in einem Immunpräzipitationsansatz ("Pull-Down-Assay") nucläere Interaktionspartner des Enzyms charakterisiert. Diese Partner sollen nach Gelelektrophorese und MALDI-TOF-Analyse identifiziert werden. Zu den DNA-Prozessierungsenzyme zählt auch Topisomerase I. Durch Antikörpervermittelte Assays gelang es nachzuweisen, dass Topoisomerase I mit TrxR eine Protein-Protein-Wechsekwirkung eingeht. In einem Rekonstruktionssystem mit rekombinanter Topoisomerase I und gerenigter TrxR ergab sich jedoch keiner Hinweis für eine funktionelle Interaktion in DNA-Relaxations-Assay. Die Aufschlüsselung der Protein-Protein-Interaktion, der detaillierten molekularen Mechanismen und ihrer physiologischen relevanz bleibt weiteren Unterschungen vorbehalten. N2 - The mammalian thioredoxin system consists of thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH. Human Trx was originally cloned as a soluble factor named adult T-cell leukemia-derived factor, which was purified from the conditioned medium of human T-cell lymphotrophic virus-I-transformed CD4+ T-cell line, ATL-2 (Yodoi, J., et al.1992, Nakamura, et al. 1992, 1997, Tagaya, Y., et al. 1989). It participates in many different types of reactions including synthesis of deoxyribonucleotides , redox control of transcription factors, reduction of peroxides, and regulation of apoptosis. The thioredoxin reductases (TrxRs) belong to the flavoprotein family of pyridine nucleotide-disulphide oxidoreductases that includes lipoamide dehydrogenase, glutathione reductase and mercuric ion reductase. Members of this family are homodimeric proteins. Each monomer includes an FAD prosthetic group, an NADPH binding site and an active site containing a redox-active disulphide. Recently it has been reported that the human TrxR1 gene exhibits possible alternative splicing around its first exon (Rundlof AK, et al. 2001). The Arner group reported three isoforms of TrxR mRNA (I, II, V) and Tonissen group identified two further isoforms (isoforms IV and VI) and proposed another (isoform III), that would align with the mouse isoform III.In this work it could be demonstrated, that PCR using isoform specific oligonucleotide primers yielded products for both ATGs, indicating the existence of both mRNA species. Transient transfection of GFP fusion proteins (Trx-N1-EGFP, TrxR-N1-EGFP, TrxR-pDsRed2N1) into osteoblast cells (hFOB) revealed cytosolic localisation of both isoforms. While the isoform ATG1 was also nuclear, ATG2 was very rarely found in the nucleus. Transfection of the ATG1 to ATG2 fragment alone showed cytosolic and nuclear localisation accordingly. Staining of HFOBs and mesenchymal stem cells with Trx antibody revealed that Trx was preferentially localised in the nucleus; using an antibody to TrxR it was shown that the enzyme was always colocalized with Trx in mesenchymal stem cells, osteoblast-like cells and chondrocyte like cells. In summary we could characterise the subcellular localisation of the Trx/TrxR system in osteoblasts and mesenchymal stem cells with respect to the expression of TrxR isoforms. The role of the ribonucleotide reductase TrxR in the nucleus remains to be elucidated. Besides its well characterized function in modulation of transcription factor DNA binding, the role in nuclear antioxidative defense and/or DNA processing and repair might be hypothesized. KW - Genom KW - Thioredoxin KW - Thioredoxin Reduktase KW - Topoisomerase I KW - Tumorinstabilität KW - genom KW - Thioredoxin KW - Thioredoxin reductase KW - Topoisomerase I KW - Tumorinstability Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-6999 ER - TY - THES A1 - Schütz, Monika T1 - Dynamik und Funktion der HMG-Proteine T1 - Dynamics and Function of HMG-proteins N2 - HMG-Proteine sind Architekturelemente des Chromatins und regulieren durch ihre Bindung an das Chromatin auf verschiedene Weise DNA-abhängige Prozesse wie Replikation, Transkription und DNA-Reparatur. Um zu verstehen, wie HMG-Proteine ihre vielfältigen Funktionen erfüllen können, wurde mit Hilfe von EGFP- und DsRed2-Fusionsproteinen ihre Funktion in vivo untersucht. Im Wesentlichen wurde dabei mit Hilfe von Bleichtechniken ihr dynamisches Verhalten charakterisiert. Daneben wurde für die HMGN-Proteine ihr bislang unbekanntes Expressionsverhalten in Tumorzellen bestimmt. So konnte für die HMGN-Proteine gezeigt werden, dass bestimmte Tumorzelllinien (HT-29, FTC-133, MCF-7, RPMI 8226, 697, Ishikawa, LNCap) eine relativ erhöhte Expression von HMGN2 aufweisen, die mit der Tumordifferenzierung korreliert. Eine relativ verringerte Expression von HMGN1 steht dagegen in Mammakarzinomen und Non-Hodgkin-Lymphomen in direktem Zusammenhang mit der Aggressivität der Tumore. Somit kann die HMGN-Expression bei diesen Tumoren als diagnostischer Marker verwendet werden. FRAP-Analysen mit EGFP-Fusionsproteinen führten zu der Erkenntnis, dass HMGN1, HMGN2, HMGA1a, HMGA1b und HMGB1 sich sehr schnell durch den Zellkern bewegen und nur transient an das Chromatin gebunden sind. Es konnte gezeigt werden, dass die spezifischen DNA/Chromatin-Bindungsmotive im Wesentlichen entscheiden, wo die Bindung der HMG-Proteine in vivo erfolgt, ihre Verweildauer im Euchromatin, Heterochromatin und zellzyklusabhängig dann aber durch Modifikationen (Phosphorylierungen, Acetylierungen) reguliert wird. Dies wurde beispielhaft durch punktmutierte und deletierte Fusionsproteine, sowie durch Inkubation der Zellen mit spezifischen Drogen für die HMGA1a-Proteine gezeigt. FRAP-Analysen haben außerdem gezeigt, dass die Spleißvarianten hHMGA1a und hHMGA1b unterschiedliche kinetische Parameter besitzen. Dies zeigt, dass beiden Varianten unterschiedliche Funktionen zugesprochen werden können. Die gefundenen spezifischen, transienten Verweildauern der einzelnen HMG-Proteine führen zu einem Modell eines dynamischen Chromatin-Netzwerkes, wobei alle HMG-Proteine in Wechselwirkungen innerhalb eines dynamischen Chromatinprotein-Cocktails DNA-abhängige Prozesse regulieren können. Die jeweiligen, wie hier gezeigt, durch Modifikationen regulierten Verweildauern der HMG-Proteine bestimmen darüber, welche anderen Chromatinproteine wie lange am Chromatin verbleiben und bestimmte Funktionen, wie beispielsweise die Modifikation der Core-Histone, übernehmen können. Die dynamischen Parameter einzelner HMG-Proteine erklären so, wie diese Proteine ihre vielfältigen Funktionen als Architekturelemente und bei der Regulation DNA-abhängiger Prozesse erfüllen können. Einige Vertreter, wie die HMGB1-Proteine, bewegen sich so schnell durch den Zellkern, dass ihre kinetischen Parameter durch das beschränkte zeitliche Auflösungsvermögen konfokaler Mikroskope der älteren Generation nicht erfassbar sind. Die Bestimmung von Dosis-Wirkungs-Beziehungen von Drogen, welche die kinetischen Parameter von HMGB1-Proteinen beeinflussen können, ist inzwischen mit Mikroskopen der neuen Generation möglich. Im Verlaufe der Arbeit zeigte sich, dass andere verwendete Fluorophore wie DsRed2 die kinetischen Eigenschaften von HMG-Fusionsproteinen beeinflussen können. Durch eine erhöhte Verweildauer können auch sehr transiente Interaktionen sichtbar gemacht werden. Wie gezeigt wurde, kann eine erhöhte Verweildauer aber auch zur Verdrängung anderer Proteine führen, die die gleichen Bindungsstellen benutzen und so eine Modulation des Chromatins bewirken. Die Nutzung von DsRed-Fluorophoren ermöglicht interessante neue Erkenntnisse. Diese müssen aber stets vor dem Hintergrund eines veränderten dynamischen Verhaltens der Fusionsproteine interpretiert werden. Zusammengenommen liefern die hier vorgestellten Ergebnisse zur Dynamik der HMG-Proteine grundlegende Informationen, die zur Klärung ihrer Funktion bei Chromatinmodulationen, etwa bei Differenzierungsprozessen oder der Entstehung von Tumorzellen entscheidend beitragen. Die Erkenntnis, dass diese Proteine lediglich transiente Interaktionen mit ihren Bindungspartnern eingehen können, sind im Hinblick auf die Behandlung von Tumoren, bei denen HMG-Proteine im Vergleich zu Normalgewebe häufig überexprimiert sind, von großer Bedeutung. N2 - HMG proteins are architectural chromatin proteins that regulate different DNA dependent processes such as replication, transcription and DNA repair. To understand how HMG proteins manage to fulfill their multiple functions they were investigated in vivo with the help of EGFP and DsRed2 fusion proteins. Using photobleaching techniques their dynamic properties were characterized in detail. Furthermore, the expression pattern of HMGN proteins in tumor cell lines was investigated for the first time. As presented in this thesis, it was found that HMGN2 proteins exhibited an elevated expression level in some tumor cells (HT-29, FTC-133, MCF-7, RPMI 8226, 697, Ishikawa, LNCap) correlating with the tumor differentiation status. In contrast a reduced expression of HMGN1 found in Mammacarcinoma and Non-Hodgkin-Lymphoma correlated with tumor aggressiveness. Therefore the analyses of HMGN expression may be a suitable diagnostic marker at least in the tumors investigated. FRAP analyses with cells expressing EGFP fusion proteins revealed that HMGN1, HMGN2, HMGA1a, HMGA1b and HMGB1 move very rapidly through the cell nucleus and only bind transiently to chromatin. It was demonstrated that the decision where HMG proteins bind in vivo is essentially mediated by their specific DNA binding motifs. However, the individual residence times in eu- or heterochromatin and chromosomes are regulated by protein modifications (phosphorylation, acetylation). This has been demonstrated using point mutated and truncated HMGA fusion proteins and by the application of specific drugs as well. FRAP analyses also indicated that the splice variants HMGA1a and HMGA1b exhibit different kinetic properties. This supports the view that both variants have different functions. The kinetic parameters characteristic for each HMG protein lead to a model of a dynamic chromatin network in which all HMG proteins are able to regulate DNA dependent processes via multiple interactions with other proteins as components of a cocktail of dynamic chromatin proteins. In this model, individual residence times of all HMG proteins which are regulated by secondary modifications would determine how long other chromatin modulating proteins could reside on chromatin. Therefore the dynamic parameters of the HMG proteins directly affect the capability of other proteins to modulate chromatin structure, e.g. by modifications of core histones. This explains the multiple functions of HMG proteins in chromatin packaging and function. The kinetic parameters of some rapidly moving members of the HMG protein family, such as HMGB1, are beyond the time resolution capacities of most confocal microscopes. However, novel setups of modern confocal microscopes are now capable to determine the dynamic parameters of HMGB proteins and allow investigations of drug induced effects on HMGB dynamics. Control experiments revealed that other fluorophors such as DsRed2 modulate the dynamic parameters of HMG fusion proteins. Due to an increased residence time of HMG DsRed2 fusion proteins it is possible to monitor even very transient interactions. Moreover, it could be observed that this increased residence time may interfere with binding of other proteins (i.e. proteins which occupy the same binding sites) leading to a reorganization of chromatin. Thus, fusion proteins with DsRed fluorophores may be used as helpful tools to investigate protein functions. However, results should always be considered against the background of DsRed modulated kinetics and thus they should be interpreted very carefully. Taken together the results presented in this thesis provide novel information about the dynamic behaviour of HMG proteins which is crucial to understand how chromatin is modulated during differentiation processes or development of neoplasia. Their transient interactions with DNA or other proteins and the fact that overexpression correlates with tumor progression might be relevant for the development of novel strategies for tumor treatment. KW - HMG-Proteine KW - Chromatin KW - Genexpression KW - Tumor KW - HMG KW - Dynamik KW - Chromatin KW - EGFP KW - Tumorinstabilität KW - HMG KW - Dynamics KW - Chromatin KW - EGFP KW - Tumorinstability Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15627 ER -