TY - JOUR A1 - Peixoto, Thiago R. F. A1 - Bentmann, Hendrik A1 - Rüßmann, Philipp A1 - Tcakaev, Abdul-Vakhab A1 - Winnerlein, Martin A1 - Schreyeck, Steffen A1 - Schatz, Sonja A1 - Vidal, Raphael Crespo A1 - Stier, Fabian A1 - Zabolotnyy, Volodymyr A1 - Green, Robert J. A1 - Min, Chul Hee A1 - Fornari, Celso I. A1 - Maaß, Henriette A1 - Vasili, Hari Babu A1 - Gargiani, Pierluigi A1 - Valvidares, Manuel A1 - Barla, Alessandro A1 - Buck, Jens A1 - Hoesch, Moritz A1 - Diekmann, Florian A1 - Rohlf, Sebastian A1 - Kalläne, Matthias A1 - Rossnagel, Kai A1 - Gould, Charles A1 - Brunner, Karl A1 - Blügel, Stefan A1 - Hinkov, Vladimir A1 - Molenkamp, Laurens W. A1 - Friedrich, Reinert T1 - Non-local effect of impurity states on the exchange coupling mechanism in magnetic topological insulators JF - NPJ Quantum Materials N2 - Since the discovery of the quantum anomalous Hall (QAH) effect in the magnetically doped topological insulators (MTI) Cr:(Bi,Sb)\(_2\)Te\(_3\) and V:(Bi,Sb)\(_2\)Te\(_3\), the search for the magnetic coupling mechanisms underlying the onset of ferromagnetism has been a central issue, and a variety of different scenarios have been put forward. By combining resonant photoemission, X-ray magnetic circular dichroism and density functional theory, we determine the local electronic and magnetic configurations of V and Cr impurities in (Bi,Sb)\(_2\)Te\(_3\). State-of-the-art first-principles calculations find pronounced differences in their 3d densities of states, and show how these impurity states mediate characteristic short-range pd exchange interactions, whose strength sensitively varies with the position of the 3d states relative to the Fermi level. Measurements on films with varying host stoichiometry support this trend. Our results explain, in an unified picture, the origins of the observed magnetic properties, and establish the essential role of impurity-state-mediated exchange interactions in the magnetism of MTI. KW - shape-truncation functions KW - semiconductors Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230686 VL - 5 ER - TY - JOUR A1 - Sessi, Paolo A1 - Biswas, Rudro R. A1 - Bathon, Thomas A1 - Storz, Oliver A1 - Wilfert, Stefan A1 - Barla, Alessandro A1 - Kokh, Konstantin A. A1 - Tereshchenko, Oleg E. A1 - Fauth, Kai A1 - Bode, Matthias A1 - Balatsky, Alexander V. T1 - Dual nature of magnetic dopants and competing trends in topological insulators JF - Nature Communications N2 - Topological insulators interacting with magnetic impurities have been reported to host several unconventional effects. These phenomena are described within the framework of gapping Dirac quasiparticles due to broken time-reversal symmetry. However, the overwhelming majority of studies demonstrate the presence of a finite density of states near the Dirac point even once topological insulators become magnetic. Here, we map the response of topological states to magnetic impurities at the atomic scale. We demonstrate that magnetic order and gapless states can coexist. We show how this is the result of the delicate balance between two opposite trends, that is, gap opening and emergence of a Dirac node impurity band, both induced by the magnetic dopants. Our results evidence a more intricate and rich scenario with respect to the once generally assumed, showing how different electronic and magnetic states may be generated and controlled in this fascinating class of materials. KW - magnetic properties and materials KW - topological insulators KW - magnetic dopants Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172704 VL - 7 ER -