TY - JOUR A1 - Wurmb, Thomas A1 - Scholtes, Katja A1 - Kolibay, Felix A1 - Schorscher, Nora A1 - Ertl, Georg A1 - Ernestus, Ralf-Ingo A1 - Vogel, Ulrich A1 - Franke, Axel A1 - Kowalzik, Barbara T1 - Hospital preparedness for mass critical care during SARS-CoV-2 pandemic JF - Critical Care N2 - Mass critical care caused by the severe acute respiratory syndrome corona virus 2 pandemic poses an extreme challenge to hospitals. The primary goal of hospital disaster preparedness and response is to maintain conventional or contingency care for as long as possible. Crisis care must be delayed as long as possible by appropriate measures. Increasing the intensive care unit (ICU) capacities is essential. In order to adjust surge capacity, the reduction of planned, elective patient care is an adequate response. However, this involves numerous problems that must be solved with a sense of proportion. This paper summarises preparedness and response measures recommended to acute care hospitals. KW - Mass critical care KW - Disaster response KW - SARS-CoV-2 KW - Hospital emergency plan Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230201 VL - 24 ER - TY - JOUR A1 - Stetter, Christian A1 - Weidner, Franziska A1 - Lilla, Nadine A1 - Weiland, Judith A1 - Kunze, Ekkehard A1 - Ernestus, Ralf-Ingo A1 - Muellenbach, Ralf Michael A1 - Westermaier, Thomas T1 - Therapeutic hypercapnia for prevention of secondary ischemia after severe subarachnoid hemorrhage: physiological responses to continuous hypercapnia JF - Scientific Reports N2 - Temporary hypercapnia has been shown to increase cerebral blood flow (CBF) and might be used as a therapeutical tool in patients with severe subarachnoid hemorrhage (SAH). It was the aim of this study was to investigate the optimum duration of hypercapnia. This point is assumed to be the time at which buffer systems become active, cause an adaptation to changes of the arterial partial pressure of carbon dioxide (PaCO2) and annihilate a possible therapeutic effect. In this prospective interventional study in a neurosurgical ICU the arterial partial pressure of carbon dioxide (PaCO\(_2\)) was increased to a target range of 55 mmHg for 120 min by modification of the respiratory minute volume (RMV) one time a day between day 4 and 14 in 12 mechanically ventilated poor-grade SAH-patients. Arterial blood gases were measured every 15 min. CBF and brain tissue oxygen saturation (StiO\(_2\)) were the primary and secondary end points. Intracranial pressure (ICP) was controlled by an external ventricular drainage. Under continuous hypercapnia (PaCO\(_2\) of 53.17 ± 5.07), CBF was significantly elevated between 15 and 120 min after the start of hypercapnia. During the course of the trial intervention, cardiac output also increased significantly. To assess the direct effect of hypercapnia on brain perfusion, the increase of CBF was corrected by the parallel increase of cardiac output. The maximum direct CBF enhancing effect of hypercapnia of 32% was noted at 45 min after the start of hypercapnia. Thereafter, the CBF enhancing slowly declined. No relevant adverse effects were observed. CBF and StiO\(_2\) reproducibly increased by controlled hypercapnia in all patients. After 45 min, the curve of CBF enhancement showed an inflection point when corrected by cardiac output. It is concluded that 45 min might be the optimum duration for a therapeutic use and may provide an optimal balance between the benefits of hypercapnia and risks of a negative rebound effect after return to normal ventilation parameters. KW - cerebrovascular disorders KW - clinical trials KW - neurology KW - neurovascular disorders KW - Phase II trials Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260779 VL - 11 IS - 1 ER - TY - JOUR A1 - Salvador, Ellaine A1 - Köppl, Theresa A1 - Hörmann, Julia A1 - Schönhärl, Sebastian A1 - Bugaeva, Polina A1 - Kessler, Almuth F. A1 - Burek, Malgorzata A1 - Ernestus, Ralf-Ingo A1 - Löhr, Mario A1 - Hagemann, Carsten T1 - Tumor Treating Fields (TTFields) induce cell junction alterations in a human 3D in vitro model of the blood-brain barrier JF - Pharmaceutics N2 - In a recent study, we showed in an in vitro murine cerebellar microvascular endothelial cell (cerebEND) model as well as in vivo in rats that Tumor-Treating Fields (TTFields) reversibly open the blood–brain barrier (BBB). This process is facilitated by delocalizing tight junction proteins such as claudin-5 from the membrane to the cytoplasm. In investigating the possibility that the same effects could be observed in human-derived cells, a 3D co-culture model of the BBB was established consisting of primary microvascular brain endothelial cells (HBMVEC) and immortalized pericytes, both of human origin. The TTFields at a frequency of 100 kHz administered for 72 h increased the permeability of our human-derived BBB model. The integrity of the BBB had already recovered 48 h post-TTFields, which is earlier than that observed in cerebEND. The data presented herein validate the previously observed effects of TTFields in murine models. Moreover, due to the fact that human cell-based in vitro models more closely resemble patient-derived entities, our findings are highly relevant for pre-clinical studies. KW - blood-brain barrier KW - Tumor-Treating Fields (TTFields) KW - CNS disorders KW - human brain microvascular endothelial cells (HBMVEC) KW - human cells KW - 3D in vitro model Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304830 SN - 1999-4923 VL - 15 IS - 1 ER - TY - JOUR A1 - Salvador, Ellaine A1 - Kessler, Almuth F. A1 - Domröse, Dominik A1 - Hörmann, Julia A1 - Schaeffer, Clara A1 - Giniunaite, Aiste A1 - Burek, Malgorzata A1 - Tempel-Brami, Catherine A1 - Voloshin, Tali A1 - Volodin, Alexandra A1 - Zeidan, Adel A1 - Giladi, Moshe A1 - Ernestus, Ralf-Ingo A1 - Löhr, Mario A1 - Förster, Carola Y. A1 - Hagemann, Carsten T1 - Tumor Treating Fields (TTFields) reversibly permeabilize the blood–brain barrier in vitro and in vivo JF - Biomolecules N2 - Despite the availability of numerous therapeutic substances that could potentially target CNS disorders, an inability of these agents to cross the restrictive blood–brain barrier (BBB) limits their clinical utility. Novel strategies to overcome the BBB are therefore needed to improve drug delivery. We report, for the first time, how Tumor Treating Fields (TTFields), approved for glioblastoma (GBM), affect the BBB’s integrity and permeability. Here, we treated murine microvascular cerebellar endothelial cells (cerebEND) with 100–300 kHz TTFields for up to 72 h and analyzed the expression of barrier proteins by immunofluorescence staining and Western blot. In vivo, compounds normally unable to cross the BBB were traced in healthy rat brain following TTFields administration at 100 kHz. The effects were analyzed via MRI and immunohistochemical staining of tight-junction proteins. Furthermore, GBM tumor-bearing rats were treated with paclitaxel (PTX), a chemotherapeutic normally restricted by the BBB combined with TTFields at 100 kHz. The tumor volume was reduced with TTFields plus PTX, relative to either treatment alone. In vitro, we demonstrate that TTFields transiently disrupted BBB function at 100 kHz through a Rho kinase-mediated tight junction claudin-5 phosphorylation pathway. Altogether, if translated into clinical use, TTFields could represent a novel CNS drug delivery strategy. KW - blood–brain barrier KW - TTFields KW - CNS disorders Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288057 SN - 2218-273X VL - 12 IS - 10 ER - TY - JOUR A1 - Feldheim, Jonas A1 - Wend, David A1 - Lauer, Mara J. A1 - Monoranu, Camelia M. A1 - Glas, Martin A1 - Kleinschnitz, Christoph A1 - Ernestus, Ralf-Ingo A1 - Braunger, Barbara M. A1 - Meybohm, Patrick A1 - Hagemann, Carsten A1 - Burek, Malgorzata T1 - Protocadherin Gamma C3 (PCDHGC3) is strongly expressed in glioblastoma and its high expression is associated with longer progression-free survival of patients JF - International Journal of Molecular Sciences N2 - Protocadherins (PCDHs) belong to the cadherin superfamily and represent the largest subgroup of calcium-dependent adhesion molecules. In the genome, most PCDHs are arranged in three clusters, α, β, and γ on chromosome 5q31. PCDHs are highly expressed in the central nervous system (CNS). Several PCDHs have tumor suppressor functions, but their individual role in primary brain tumors has not yet been elucidated. Here, we examined the mRNA expression of PCDHGC3, a member of the PCDHγ cluster, in non-cancerous brain tissue and in gliomas of different World Health Organization (WHO) grades and correlated it with the clinical data of the patients. We generated a PCDHGC3 knockout U343 cell line and examined its growth rate and migration in a wound healing assay. We showed that PCDHGC3 mRNA and protein were significantly overexpressed in glioma tissue compared to a non-cancerous brain specimen. This could be confirmed in glioma cell lines. High PCDHGC3 mRNA expression correlated with longer progression-free survival (PFS) in glioma patients. PCDHGC3 knockout in U343 resulted in a slower growth rate but a significantly faster migration rate in the wound healing assay and decreased the expression of several genes involved in WNT signaling. PCDHGC3 expression should therefore be further investigated as a PFS-marker in gliomas. However, more studies are needed to elucidate the molecular mechanisms underlying the PCDHGC3 effects. KW - glioblastoma multiforme KW - glioma KW - astrocytoma KW - recurrence KW - relapse KW - mRNA KW - protein KW - brain KW - expression KW - PCDHGC3 KW - WNT signaling Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284433 SN - 1422-0067 VL - 23 IS - 15 ER -