TY - THES A1 - Spanheimer, Daniela Cornelia T1 - Dynamische Leistungsverstärkung bei GHz Frequenzen und Speichereigenschaften von nanoelektronischen GaAs/AlGaAs Transistoren T1 - Dynamic power gain at GHz frequencies and memory effects of nanoelectronic GaAs/AlGaAs transistors N2 - Es wurde gezeigt, dass durch die Vorpositionierung von Quantenpunkten, diese mit einem gezielten Abstand im Bereich von einigen 100 nm zueinander und daher mit einer definierten Dichte in Speicherbauelemente eingebracht werden können. Es wurde bei tiefen Temperaturen wohldefinierte Coulombblockade demonstriert. Durch die Analyse der Coulomb-Rauten war es möglich, auf die Größe und Ladeenergie von Quantenpunkten im Kanal zu schliessen. Es wurde gezeigt, dass vorpositionierte Quantenpunkte sehr gut als Floating Gate eingesetzt werden können. Die Speichereigenschaften dieser Quantenpunkte wurden im Hinblick auf die Hysteresebreite DeltaVth in Abhängigkeit der Kanalbreite, der Drainspannung und der Temperatur untersucht und diskutiert. Hierbei konnte eine deutliche Abhängigkeit der Thresholdspannung von der Kanalbreite der Struktur ermittelt werden. Für Strukturen mit einem breiten Kanal wurde festgestellt, dass der Stromfluss bereits bei negativen Gatespannungen einsetzt, während für schmale Strukturen positive Gatespannungen nötig sind, um einen Ladungstransport hervorzurufen. Zur Bestimmung der Temperaturstabilität der Ladezustände wurde sowohl die Thresholdspannung als auch die Hysteresebreite als Funktion der Probentemperatur im Bereich von 4.2K bis Raumtemperatur bei verschiedenen Drainspannungen bestimmt. Hierbei wurde festgestellt, dass die Hysteresebreite bis zu einer kritischen Temperatur stufenförmig abnimmt und danach wieder leicht ansteigt. Bei der Untersuchung der Threshold- Spannung wurde ein Unterschied Vth,zu und Vth,auf festgestellt. Erstmals konnte ein lateral und vertikal positionierter InAs Quantenpunkt als Speicher für den Betrieb bei Raumtemperatur demonstriert werden. Ferner wurde die Wirkung eines Gate-Leckstromes auf den gemessenen Drain- Strom eines monolithischen Drei-Kontakt-Struktur untersucht und diskutiert. Die untersuchten Proben basieren auf einem neuen Parallel-Design, in welchem das Gate nicht wie üblich zwischen Source und Drain positioniert wurde, sondern in serieller Verbindung mit dem Drain- oder Sourcekontakt, d.h. mit einem zentralen Drain zwischen Source und Gate, gesetzt wurde. Hierdurch konnte eine merkliche Reduzierung des Probeninnenwiderstandes erreicht werde. Zu Beginn wurden zur Charakterisierung der Probe Transportmessungen bei Raumtemperatur durchführt. Hierbei konnte verglichen mit herkömmlichen Quantendrahttranistoren realisiert auf demselbenWafer, zum einen eine deutlich höhere Transconductance durch das parallele Design erreicht werden. Zum anderen zeigte die ermittelte Transconductance nicht den erwarteten linearen Verlauf in Abhängigkeit der Drainspannung, sondern einen quadratischen. Die Messungen zeigten außerdem einen Abfall des Drain-Stromes ab einer kritischen Größe des Gate-Leckstromwertes, welcher auf ein dynamisches Gate, hervorgerufen durch die Ladungsträger aus dem Gate, zurückgeführt wird. Diese zusätzliche virtuelle Kapazität addiert sich in paralleler Anordnung zum geometrischen Gate-Kondensator und verbessert die Transistoreigenschaften. Zum Abschluss der Arbeit wurden Hochfrequenzmessungen zur Ermittlung einer Leistungsverstärkung von Drei-Kontakt-Strukturen bei Raumtemperatur für unterschiedliche Gate- und Drainspannungen durchgeführt. Um die Hochfrequenzeigenschaften der untersuchten Probe zu erhöhen, wurde hierfür ein Design gewählt, in welchem die Goldkontakte zur Kontaktierung sehr nahe an die aktive Region heranragen. Für diese Spannungskombination konnte für eine Frequenz im Gigaherz-Bereich eine positive Spannungsverstärkung > 1 dB gemessen werden. Höhere Spannungen führen zu einem Sättigungswert in der Leistungsverstärkung. Dies wird zurückgeführt auf den maximal zur Verfügung stehenden Strom in der aktiven Region zwischen den nahen Goldkontakten. Zudem wurde eine Lösung vorgestellt, um das fundamentale Problem der Impedanzfehlanpassung für Hochfrequenzmessungen von nanoelektronischen Bauelementen mit einem hohen Innerwiderstand zu lösen. Eine Anpassung der unterschiedlichen Impedanzen zwischen Bauelement und Messapparatur ist unbedingt notwendig, um Reflexionen bei der Übertragung zu vermeiden und somit die Gewinnoptimierung zu erhöhen. Zur Behebung der Fehlanpassung wurde im Rahmen dieser Arbeit ein Impedanz-Anpassungs-Netzwerk auf einer PCB-Platine realisiert, welches mit der Probe verbunden wurde. Die Anpassung wurde durch eingebaute Strichleitungen in das Layout des Anpassungsboards vorgenommen. Durchgeführte Simulationen der Probe in Verbindung mit dem Anpassungs-Netzwerk bestätigten die experimentellen Ergebnisse. Durch die Anpassung konnte der simulierte Reflexionskoeffizient deutlich reduziert werden, bei gleichzeitiger Erhöhung des Transmissionskoeffizienten. Ebenfalls zeigten die Messungen an einer Drei-Kontakt-Struktur mit Anpassungs-Board eine signifikante Verbesserung der Leistungsverstärkung. N2 - Dynamical Charging and Discharging of laterally aligned quantum dot structures We can demonstrate that the direct positioning enables us to embed quantum dots with given periods to each other of only a few 100 nm and therefore with a defined density into the memory-structures. For low temperatures, well defined Coulombblockade can be observed. The analysis of the measured diamond patterns allows the determination of the dimension and the charging energy of the embedded quantum dots in the channel. The memory properties of these quantum dots were analyzed and discussed in terms of the hysteresis width DeltaVth which depends on the channel width, the applied drain voltage and the device temperature. The measurements reveal a dependence of the threshold voltage on the channel width of the structure. For devices with a wide channel the current transport sets in with negative applied gate voltages, in contrast to structures with narrow channels, requiring positive gate voltages to cause a current flow through the channel. To explain these results we assume that in large channels a higher negative voltage is necessary to deplete the charges out of the channel due to the higher charge density. To analyze the temperature stability of the charge states the threshold voltage as well as the hysteresis width is detected as a function of the temperature for different drain voltages in the range of 4.2K up to room temperature. It is determined that the hysteresis width decreases to a critical temperature before it rises again. For the investigation of the threshold voltage a difference between Vth,up and Vth,down is demonstrated. We assume that this difference is caused by the different charging behavior for increasing charge energies. In this work, lateral and vertical positioned InAs quantum dots could be demonstrated as a memory device operated at room temperature for the first time. Improved transistor functionality caused by gate leakage currents in nanoscaled Three Terminal Structures Further we investigate the role of gate leakage on the drain current in a monolithic, unipolar GaAs/AlGaAs heterostructure based on three leaky coupled contacts. Two in-plane barriers, defined by rows of etched holes in a two-dimensional electron gas, separate the leaky gate from the central drain and the drain from the source. Because of this the internal resistance of the structure can be appreciably decreased. It should be noted that the observed differential voltage amplification in the gate leakage regime of the studied structure is by far larger compared to the voltage amplification of any in-plane wire transistor fabricated from the same wafer, which were controlled by two non-leaking in-plane gates. The calculated transconductance increases quadratically and not in a non-linear manner, as expected. A pronounced reduction of the drain current sets in when the gate starts to leak, pointing at a large parallel gate capacitor. We associate the gate-leakage current induced gating with a virtual floating gate induced by the space charge injected from the gate. The space charge can hereby be described by a parallel gate capacitor that can control a low dimensional channel lying nearby. High frequency measurements on Three Terminal Structures High frequency measurements for determination of the power gain in Three Terminal Structures are carried out at room temperature. To improve the high frequency properties of the investigated structures a special design was chosen, where the gold contacts for contacting the sample approach very closely the active switching region. The measurements show that negative gate voltages are much more efficient to the power gain than positive ones. For these voltage combinations a power gain > 1 dB for frequencies in the GHz range is detected, whereas the power gain saturates for higher voltages. This is interpreted in terms of the maximum number of charges in the active region between the gold contacts. Furthermore an answer to the fundamental obstacle of the impedance mismatch for high frequency measurements on nanoelectronic structures with high internal resistance is given. Such a matching between the device and the measurement setup is necessary to reduce signal reflections and therefore increase the gain. To match the impedances, an impedancematching- network on a PCB-plate (printed circuit board) via integrated stubs was realized. Simulation data of the sample in connection with the matching-network is in very good agreement with the experimental data. Using the network reduces the simulated reflection coefficient and simultaneously raises the transmission coefficient. The measurements also show a significant improvement of the power gain behaviour. KW - Verstärkung KW - Hochfrequenz KW - Nanoelektronik KW - HEMT KW - Quantenpunkt KW - Coulomb-Blockade KW - Leistungsverstärkung KW - power gain Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-37589 ER - TY - THES A1 - Miller, Kirill T1 - Untersuchung von Nanostrukturen basierend auf LaAlO\(_3\)/SrTiO\(_3\) für Anwendungen in nicht von-Neumann-Rechnerarchitekturen T1 - Investigation of nanostructures based on LaAlO\(_3\)/SrTiO\(_3\) for applications in non von Neumann architectures N2 - Die Dissertation beschäftigt sich mit der Analyse von oxidischen Nanostrukturen. Die Grundlage der Bauelemente stellt dabei die LaAlO3/SrTiO3-Heterostruktur dar. Hierbei entsteht an der Grenzfläche beider Übergangsmetalloxide ein quasi zweidimensionales Elektronengas, welches wiederum eine Fülle von beachtlichen Eigenschaften und Charakteristika zeigt. Mithilfe lithographischer Verfahren wurden zwei unterschiedliche Bauelemente verwirklicht. Dabei handelt es sich einerseits um einen planaren Nanodraht mit lateralen Gates, welcher auf der Probenoberfläche prozessiert wurde und eine bemerkenswerte Trialität aufweist. Dieses Bauelement kann unter anderem als ein herkömmlicher Feldeffekttransistor agieren, wobei der Ladungstransport durch die lateral angelegte Spannung manipuliert wird. Zusätzlich konnten auch Speichereigenschaften beobachtet werden, sodass das gesamte Bauelement als ein sogenannter Memristor fungieren kann. In diesem Fall hängt der Ladungstransport von der Elektronenakkumulation auf den lateralen potentialfreien Gates ab. Die Memristanz des Nanodrahts lässt sich unter anderem durch Lichtleistungen im Nanowattbereich und mithilfe von kurzen Spannungspulsen verändern. Darüber hinaus kann die Elektronenakkumulation auch in Form einer memkapazitiven Charakteristik beobachtet werden. Neben dem Nanodraht wurde auch eine Kreuzstruktur, die eine ergänzende ferromagnetischen Elektrode beinhaltet, realisiert. Mit diesem neuartigen Bauteil wird die Umwandlung zwischen Spin- und Ladungsströmen innerhalb der nanoskaligen Struktur untersucht. Hierbei wird die starke Spin-Bahn-Kopplung im quasi zweidimensionalen Elektronengas ausgenutzt. N2 - The dissertation focuses on the analysis of oxide nanostructures. The basis of the devices consists of the LaAlO3/SrTiO3 heterostructure. A quasi two-dimensional electron gas is formed at the interface of the two transition metal oxides, which in turn exhibits a plethora of remarkable properties and characteristics. Two different components were realized using lithographic processes. The first is a planar nanowire with lateral gates, which was processed on the sample surface and exhibits remarkable triality. Among other things, this device can act as a conventional field-effect transistor, whereby the charge transport is manipulated by the laterally applied voltage. In addition, storage properties could also be observed, so that the entire component can function as a so-called memristor. In this case, the charge transport depends on the accumulation of electrons on the floating gates. The memristance of the nanowire can be altered using light power in the nanowatt range and with the aid of short voltage pulses. In addition, electron accumulation can also be observed in the form of a memcapacitive characteristic. In addition to the nanowire, a cross structure containing a complementary ferromagnetic electrode was also realized. This novel device is used to investigate the conversion between spin and charge currents within the nanoscale structure. Here, the strong spin-orbit coupling in the quasi two-dimensional electron gas is utilized. KW - Memristor KW - Heterostruktur-Bauelement KW - Spin-Bahn-Wechselwirkung KW - Grenzfläche KW - Übergangsmetalloxide KW - LaAlO\(_3\)/SrTiO\(_3\) KW - Transportspektroskopie KW - Spin-Ladungs-Umwandlung KW - Memkondensator KW - Nanoelektronik Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-354724 ER - TY - THES A1 - Hartmann, David T1 - Elektrisches und magnetisches Schalten im nichtlinearen mesoskopischen Transport T1 - Electric and magnetic switching in nonlinear mesoscopic transport N2 - Im Rahmen dieser Arbeit wurden Transporteigenschaften von Nanostrukturen basierend auf modulationsdotierten GaAs/AlGaAs Heteroübergängen untersucht. Derartige Heterostrukturen zeichnen sich durch ein hochbewegliches zweidimensionales Elektronengas (2DEG) aus, das sich wenige 10 nm unterhalb der Probenoberfläche ausbildet. Mittels Elektronenstrahl-Lithographie und nasschemischer Ätztechnik wurde dieses Ausgangsmaterial strukturiert. Eindimensionale Leiter mit Kanalweiten von wenigen 10 nm wurden auf diese Weise hergestellt. Die Vorzüge derartiger Strukturen zeigen sich im ballistischen Elektronentransport über mehrere 10 µm und einer hohen Elektronenbeweglichkeit im Bereich von 10^6cm^2/Vs. Als nanoelektronische Basiselemente wurden eingehend eindimensionale Quantendrähte sowie y-förmig verzweigte Strukturen untersucht, deren Kanalleitwert über seitliche Gates kontrolliert werden kann. Dabei wurden die Transportmessungen überwiegend im stark nichtlinearen Transportregime bei Temperaturen zwischen 4,2 K und Raumtemperatur durchgeführt. Der Fokus dieser Arbeit lag insbesondere in der Untersuchung von Verstärkungseigenschaften und kapazitiven Kopplungen zwischen Nanodrähten, der Realisierung von komplexen Logikfunktionen wie Zähler- und Volladdiererstrukturen, dem Einsatz von Quantengates sowie der Analyse von rauschaktiviertem Schalten, stochastischen Resonanzphänomenen und Magnetfeldasymmetrien des nichtlinearen mesoskopischen Leitwertes. N2 - This thesis reports on transport features of nanoelectronic devices based on modulation doped GaAs/AlGaAs heterostructures with a two dimensional electron gas (2DEG) a few 10 nm below the sample surface. Using electron beam lithography and wet chemical etching techniques low dimensional conductors were designed with a channel width of a few 10 nm. Such conductors enable ballistic transport up to 10 µm with high electron mobilities in the range of 10^6cm^2/Vs. One dimensional quantum wires as well as y-branched structures were used as nanoelectronic basic elements, which were controlled by lateral side-gates. Transport measurements were mainly performed in the strong nonlinear transport regime at temperatures between 4.2 K and room temperature. Experimental investigations were focused on gain, capacitive couplings between single nanowires, the realisation of complex logic functions like counter and fulladder devices, quantum-gate applications, noise activated switching, stochastic resonance phenomena and magnetic field asymmetries of the nonlinear mesoscopic transport. KW - Niederdimensionales Elektronengas KW - Galliumarsenid-Bauelement KW - Galliumarsenid-Feldeffekttransistor KW - Nanoelektronik KW - Stochastische Resonanz KW - Elektronisches Rauschen KW - Quantendraht KW - Drei-Fünf-Halbleiter KW - Festkörperphysik KW - Y-Schalter KW - Magnetsensor KW - bistabiles Schalten KW - ballistischer Transport KW - Volladdierer KW - nanoelectronic KW - mesoscopic KW - ballistic KW - full adder KW - magnetic sensor KW - bistable switching Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29175 ER -