TY - THES A1 - Schmid, Evelyn T1 - Effekte des Raf Kinase Inhibitor Proteins (RKIP) auf β-adrenerge Signalwege, Herzfunktion und die Entwicklung der Herzinsuffizienz T1 - Effects of the Raf Kinase Inhibitor Protein (RKIP) on β-adrenergic signalling, cardiac function and the development of heart failure N2 - Das Raf kinase inhibitor protein (RKIP) ist ein Kinaseregulator, der im Herzen eine Präferenz für die G-Protein-gekoppelte Rezeptorkinase 2 (GRK2) zeigt. Die Regulation erfolgt durch direkte Interaktion beider Proteine, wird durch eine PKC-Phosphorylierung an Serin 153 des RKIP induziert und inhibiert die GRK2-vermittelte Phosphorylierung von G-Protein-gekoppelten Rezeptoren (GPCR). Die GRK2 desensitiviert GPCR und eine Hemmung der GRK2-Aktivität wirkt sich so positiv auf die Ansprechbarkeit von GPCR aus. Die \textbeta-adrenergen Rezeptoren (\textbeta AR) sind im Herzen maßgeblich an der Regulation der kardialen Kontraktilität beteiligt. Erste Zusammenhänge zwischen der RKIP-Expression und der kontraktilen Antwort von Kardiomyozyten wurden bereits in einer früheren Arbeit untersucht und bestätigt. Sie begründen die Fragestellung nach Effekten einer verstärkten RKIP-Expression auf \textbeta-adrenerge Rezeptorsignale, Herzfunktion und die Entwicklung der Herzinsuffizienz. Im Rahmen dieses Projektes konnten die Effekte des RKIP auf \textbeta-adrenerge Signalwege detaillierter beschrieben werden. Dabei erwies sich die inhibitorische Funktion auf die GRK2 als rezeptorspezifisch ohne Einfluss auf zytosolische Angriffspunkte der GRK2 zu nehmen. Verstärkte \textbeta-adrenerge Signale zeigten sich in neonatalen Kardiomyozyten an Hand der erhöhten cAMP-Level, PKA-Aktivität, sowie Kontraktionsrate und Relaxationsgeschwindigkeit nach \textbeta-adrenerger Stimulation. Im Einklang damit konnte eine erhöhte PKA- und CaMKII-Aktivität und eine positive Inotropie in transgenen Tieren, mit herzspezifischer Überexpression von RKIP, beobachtet werden. Durch Messung des Calcium-\textit{Cyclings} in Kardiomyozyten konnte der Phänotyp auf eine verbesserte Rückführung des Calciums, einer daraus resultierenden erhöhten Calciumbeladung des sarkoplasmatischen Retikulums und einem gesteigerten systolischen Calciumspiegel, zurückgeführt werden. Die Untersuchung der Phosphorylierung von Calciumkanälen, L-Typ-Calciumkanal und Ryanodin-Rezeptor 2, die den einwärtsgerichteten Calciumstrom vermitteln konnte ihre Beteiligung an der positiv inotropen Wirkung ausschließen. Neben dem kontraktilen Phänotyp konnten zusätzliche protektive Effekte beobachtet werden. In Modellen, die eine chronische \textbeta-adrenerge Stimulation imitieren, bzw. eine Nachlasterhöhung induzieren konnte eine Verringerung der interstitiellen Fibrose und der damit assoziierten Marker, gezeigt werden. Mit Hilfe von \textit{in vivo} EKG-Messungen konnte die Neigung zur Ausbildung von Arrhythmien untersucht werden. Auch im Hinblick auf die Anzahl der Extrasystolen waren RKIP-transgene Tiere geschützt. Infolge der Untersuchung der Phänotypen in Deletionshintergründen der einzelnen \textbeta AR-Subtypen (\textbeta\textsubscript{1}AR, \textbeta\textsubscript{2}AR) konnte die positive Inotropie mit den spezifischen Signalwegen des \textbeta\textsubscript{1}AR assoziiert und die protektiven Effekte gegenüber den Umbauprozessen und der Arrhythmieneigung dem \textbeta\textsubscript{2}-adrenergen Signalen zugeschrieben werden. Zusätzlich bestätigt sich eine besondere Rolle der G\textalpha\textsubscript{i}-Kopplung des \textbeta\textsubscript{2}AR, durch die er einen hemmenden Einfluss auf die \textbeta\textsubscript{1}AR-Singale nehmen kann. Die Untersuchung einiger Marker, die eine physiologische von einer pathologischen Hypertrophie unterscheiden, konnte das in den RKIP-transgenen Mäusen auftretende Wachstum der Kardiomyozyten als kompensatorische und physiologische Hypertrophie charakterisieren. Zusammengenommen weisen diese Ergebnisse auf eine ausgeglichene Aktivierung der beiden Rezeptoren hin, die sich gegenseitig regulieren und durch die Inhibition der GRK2 in ihrer Anregbarkeit erhalten bleiben. Mittels einer AAV9-vermittelten Gentherapie konnte das therapeutische Potential dieses Prinzips weiter bestätigt werden, da es die prominentesten Veränderungen während der Herzinsuffizienzentwicklung, wie die Verschlechterung der linksventrikulären Funktion, die Dilatation des linken Ventrikels, die Ausbildung von Lungenödemen und interstitieller Fibrose sowie die Expression von Herzinsuffizienz-assoziierten Genen, verhindern konnte. Auch konnten die Auswirkungen der Deletion des RKIP, die sich durch eine beschleunigte und gravierendere Herzinsuffizienzentwicklung auszeichnet, durch Reexpression von RKIP verhindert werden. Diese Arbeit kann somit zeigen, dass das RKIP eine ausgeglichene Verstärkung von \textbeta-adrenergen Signalwegen verursacht, die positiv inotrop und gleichzeitig protektiv wirkt. Dieses Wirkprinzip könnte ferner eine Strategie zur Erhöhung der Kontraktilität in der Herzinsuffizienz darstellen, die entgegen etablierter Theorien auf der Stimulation beider \textbeta AR basiert. N2 - The Raf kinase inhibitor protein (RKIP) is a kinase regulator with a preference for the G protein-coupled receptor kinase 2 (GRK2) in the heart. The mechanism is a direct interaction of GRK2 and RKIP, which is triggered by a PKC-mediated phosphorylation at serine 153 of RKIP. By binding the GRK2, RKIP prevents the GRK2-mediated GPCR-phosphorylation and, thus, desensitisation of GPCR. As a result, inhibition of GRK2-activity positively affects the responsiveness of cardiac G protein-coupled receptors (GPCR). The GPCR primarly responsible for the regulation of the cardiac contractility are the \textbeta-adrenergic receptors (\textbeta AR). Previous work proved an interrelation of RKIP-expression and contractile response of cardiomyocytes and set a basis for the subject of this thesis, dealing with the effects of RKIP-expression on beta-adrenergic signalling, cardiac function and the development of heart failure. The work describes the impact of RKIP on \textbeta-adrenergic signaling in more detail. An important feature of the inhibitory function of RKIP on GRK2 is a specificity for receptor targets (\textbeta AR) with no, or only minor, impact on the cytosolic targets of the GRK2. RKIP also increases \textbeta-adrenergic signalling. This appears in neonatal cardiac myocytes through an increased cAMP-generation, PKA-activity, contractile action and relaxation velocity after \textbeta-adrenergic stimulation. Similarly, RKIP-transgenic mice, with heart specific RKIP-expression, showed higher PKA and CaMKII-activities as well as, a positive inotropy. Analysis of the calcium cycling in these cardiomyocytes provided an explanation for the hypercontractile phenotype: an enhanced calcium reuptake into the sarcoplasmatic reticulum (SR), the resulting higher calcium load of the SR and an increased calcium amplitude in the cytosol during the systole cause the augmented contractile force. Furthermore, it could be ruled out, that two inward rectifying channels - L-type calcium channnel and Ryanodin Receptor 2 contribute to the positve inotropy in RKIP-transgenic mice. Besides, the RKIP-expression had additional protective effects in heart failure development, which were investigated by desease models. Hypertrophy was induced by chronic \textbeta-adrenergic stimulation and heart failure by induction of pressure overload. Under these conditions, RKIP could reduce the development of interstitial fibrosis and the expression of associated marker genes. The occurence of arrhythmias, in particular ectopic beats, was assessed by the analysis of \textit{in vivo} ECG-traces. Rated by the number of ectopic beats RKIP-transgenic mice were also protected against the induction of arrhythmia. The analysis of RKIP-expression in \textbeta AR subtype-KOs (\textbeta\textsubscript{1}KO, \textbeta\textsubscript{2}KO) could relate the different effects of RKIP to the signalling pathways of either \textbeta\textsubscript{1}AR or \textbeta\textsubscript{2}AR. As a result, RKIP effects the positive inotropy through signals of the \textbeta\textsubscript{1}AR and the protection against heart failure-related remodelling processes and arrhythmia through signals of the \textbeta\textsubscript{2}AR. Additionally a major importance could be assigned to the G\textalpha\textsubscript{i} coupling of the \textbeta\textsubscript{2}AR. This capacity of the \textbeta\textsubscript{2}AR can counteract potentially maladaptive signalling of the \textbeta\textsubscript{1}AR. A monitored growth of cardiomyocytes of RKIP-transgenic mice was assessed in greater depth using different markers to differentiate physiological from pathological hypertrophy. Thereby the occurring hypertrophy was characterised as physiological and compensatory. Taken together, these results point towards a balanced activation of both \textbeta AR. They influence each other through downstream signals and are protected from desensitisation and loss of \textbeta-adrenergic responsivness through inhibition of the GRK2 by RKIP. To validate the therapeutic potential of this mode of action, an AAV9-mediated gene therapy was conducted. In this setting, RKIP was able to prevent, or strongly reduce the most prominent changes during heart failure development. Among these are the decline of the left ventricular function, dilation of the left ventricle, development of a pulmonary congestion, interstitial fibrosis and the expression of heart failure associated genes. Moreover, the consequences of RKIP deletion, which are reflected in an accelerated and deteriorated heart failure development, could be reversed by the reexpression of RKIP. This work shows, that RKIP induces an even activation of \textbeta-adrenergic signalling, which results in a positive inotropy with concomitant protective effects. RKIPs mode of action represents a strategy and bears the possibilty to enhance cardiac contractility in the failing heart by stimulation of both \textbeta AR, which is contrary to the common belief. KW - Herzinsuffizienz KW - Raf-Kinasen KW - Inhibition KW - Kinase signaling KW - Beta-Rezeptor KW - beta-adrenerge Signalwege KW - Protein Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142486 ER - TY - THES A1 - Rösch, Philipp A. T1 - Einfluss von Aminosäuren und Proteinen auf die physikalischen und chemischen Eigenschaften von Calcium-Phosphat-Zementen T1 - Influence of amino acids and proteins on physical and chemical properties of calcium phosphate cements N2 - Ziel der vorliegenden Arbeit war es, die Auswirkungen von Aminosäuren (AS) und Proteinen auf die physikalischen und chemischen Eigenschaften von Calciumphosphat-Zement in Hinblick auf ihre klinische Verwendbarkeit zu untersuchen. Im Rahmen der Arbeit wurden ein zweikomponentiger Zement bestehend aus Tetracalciumphosphat (TTCP) und Calciumhydrogenphosphat (Monetit, DCPA), sowie zwei einkomponentige Zemente aus mechanisch aktiviertem alpha-Tricalciumphosphat (alpha-TCP) bzw. beta-Tricalciumphosphat (beta-TCP) verwendet. Die Zemente wurden mit verschiedenen Aminosäuren und Proteinen durch Zusatz zur flüssigen Zementphase modifiziert. Untersuchte Qualitätsparameter waren die Abbindezeit nach Gillmore, die mechanische Stabilität sowie die Phasenzusammensetzung nach Aushärtung und Änderungen der Oberflächenladung und des pH-Werts der Zementpartikel nach Modifikation. Die Abbindezeit wurde mittels der Gillmor-Nadel-Methode untersucht. Hierbei zeigten sich teilweise deutlich verlängerte Abbindephasen wie z.B mit Arginin (ST = 18 min) auf das Vierfache des Zementnormwertes. Eine Abhängigkeit der Abbindezeit von der Konzentration konnte nur für TTCP-DCPA-Zement mit Proteinen nachgewiesen werden. Untersuchungen der Partikelladung der Zementbestandteile über das Zeta-Potential ergaben für Arginin in Verbindung mit allen Zementen die höchsten Potentiale von bis zu -35,1 ± 1,1 mV, was über die verstärkten Abstoßungskräfte der CPC-Partikel die Verlängerung der Abbindezeiten erklärt. Die Bestimmung der pH-Werte der suspendierten Zementpartikel in Aminosäurelösungen ergab für alle Proben basischere pH-Werte als die jeweiligen isoelektrischen Punkte der Aminosäuren. Dies bedingt, dass alle Verbindungen in deprotonierter Form vorliegen. Die Ermittlung der Druck- und Zugfestigkeit der Zemente erfolgte im standardisierten Verfahren nach Verdichtung der Zementpaste. Die Druckfestigkeit (CS) der unmodifizierten Zemente lag bei 64,1 ± 3,0 MPa (alpha-TCP), 51,8 ± 4,1 MPa (beta-TCP) und 83 ± 10 MPa (TTCP-DCPA). Es zeigte sich, dass Albumin und Fibrinogen zu einer Verringerung der Zementstabilität führen. Die Zugabe von Aminosäuren zu alpha-und beta-TCP Zementen erbrachte gleichbleibende bzw. verringerte Festigkeiten. Bei TTCP-DCPA-Zement verursachte die Modifikation mit einigen Aminosäuren höhere Festigkeiten bis 133,4 ± 4,2 MPa (CS) durch 20% Glycin Zusatz, erklärbar durch eine höhere Dichte und damit geringere Porosität der Zementmatrix. Rasterlektronenmikroskopische Untersuchungen der TTCP-DCPA-Zementtextur zeigten zusätzlich eine Veränderung des mikrostrukuturellen Aufbaus der Zementmatrix. Durch infrarotspektrometrische Untersuchung der abgebundenen Zemente konnte gezeigte werden, dass alle Aminosäuren als chemisch nicht gebundene Additive in der Zementmatrix vorliegen und sich mit Wasser auswaschen lassen. Eine Umsetzung der Zementreaktanden zu nanokristallinem Hydroxylapatit konnte durch die röntgendiffraktometrische Untersuchung für alle Formulierungen gezeigt werden. Die Verbesserungen der Zementeigenschaften einiger Proben sind im Bezug auf den klinischen Einsatz interessant, da sich so die Indikationsbreite der verstärkten CPC erweitern ließe, beispielsweise auf gering kraft-belastete Defekte im Bereich der oberen Extremitäten oder der Halswirbelsäule. Weiterführende Untersuchungen müssten sich vor allem mit dem Mechanismus der beobachteten Zementverstärkung beschäftigen. Hierfür müssten oberflächensensitive Verfahren zur Charakterisierung der Wechselwirkung von Zementpartikel und Aminosäure, beispielsweise Festkörper -NMR, zum Einsatz kommen. N2 - The aim of this work was to examine the effect of amino acids and proteins on the pysical and chemical properties of some calcium phosphate cements with regard to their clinical practicability. Within this work, a two component cement consisting of tetracalcium phosphate (TTCP) and dicalcium phosphate anhydrous (Monetit, DCPA) and two single component cements made from mechanical activated alpha-tricalcium phosphate (alpha-TCP) and beta- tricalcium phosphate (beta-TCP) were investigated. The cements were modified by adding various amino acids and proteins to the liquid phase cement phase. The investigated parameters were the setting time according to Gillmore, the mechanical performance, the phase composition of the cement after setting and changes of the surface charge and the pH-value of the cement particles after modification. The setting time was determined by the Gillmore needle test. Longer setting times were obtained for example with arginine (ST = 18 min) which increased fourfold compared to the reference value. A correlation of the setting time with the concentration could only be confirmed for the TTCP-DCPA-cement system in combination with proteins. Analysis of the surface charge of cement particles by measuring the zeta potential showed for arginine in combination with all cements the highest potentials of up to – 35.1 ± 1.1 mV, which explains the prolonged setting times due to an electrostatic mutual repulsion of the CPC particles. The determination of the pH value of the suspended cement particles in amino acid solutions of all specimens showed more alkaline values than the respective isoelectic points of the amino acids. This confirmed that all compounds were available in a deprotonated form. The diametral tensile strength and the compressive strength of the cements were determined by standard method after pre-compaction. The compressive strengths (CS) of the unmodified cements were in the range of 64.1 ± 3.0 MPa (alpha-TCP), 51.8 ± 4.1 MPa (beta-TCP) and 83 ± 10 MPa (TTCP-DCPA) cement. Albumin and fibrinogen resulted in a reduction of the cement stability. The addition of amino acid to alpha-/ and beta-TCP cement led to an equal or decreased stability. The modification of TTCP-DCPA cement with some amino acids caused a higher strength of up to 133.4 ± 4.2 MPa (CS) with 20% glycine as additive. This can be explained by a higher density and thus a reduced porosity of the cement matrix. In addition the examination of the TTCP-DCPA cement morphology by scanning electron microscopy showed a change of the microstructure of the cement matrix. The investigation of the hardened cements by infrared spectroscopy showed that all amino acid additives were chemically not bound to the particles and could be removed from the cements by washing with water. X-ray diffraction analysis showed for all cement formulations a conversion to nanocrystalline hydroxyapatite after setting. The improvement of the mechanical properties of some cement samples are of interest with regard to the clinical application to extend the indications for which the cements can be used to low load bearing defects in the upper extremities or in vertebroplasty. KW - Kalzium KW - Phosphate KW - Zement KW - Aminosäure KW - Protein KW - calcium KW - phosphate KW - cement KW - amono acind KW - protein Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-18413 ER -