TY - JOUR A1 - Prieto-Garcia, Cristian A1 - Tomašković, Ines A1 - Shah, Varun Jayeshkumar A1 - Dikic, Ivan A1 - Diefenbacher, Markus T1 - USP28: oncogene or tumor suppressor? a unifying paradigm for squamous cell carcinoma JF - Cells N2 - Squamous cell carcinomas are therapeutically challenging tumor entities. Low response rates to radiotherapy and chemotherapy are commonly observed in squamous patients and, accordingly, the mortality rate is relatively high compared to other tumor entities. Recently, targeting USP28 has been emerged as a potential alternative to improve the therapeutic response and clinical outcomes of squamous patients. USP28 is a catalytically active deubiquitinase that governs a plethora of biological processes, including cellular proliferation, DNA damage repair, apoptosis and oncogenesis. In squamous cell carcinoma, USP28 is strongly expressed and stabilizes the essential squamous transcription factor ΔNp63, together with important oncogenic factors, such as NOTCH1, c-MYC and c-JUN. It is presumed that USP28 is an oncoprotein; however, recent data suggest that the deubiquitinase also has an antineoplastic effect regulating important tumor suppressor proteins, such as p53 and CHK2. In this review, we discuss: (1) The emerging role of USP28 in cancer. (2) The complexity and mutational landscape of squamous tumors. (3) The genetic alterations and cellular pathways that determine the function of USP28 in squamous cancer. (4) The development and current state of novel USP28 inhibitors. KW - USP28 KW - SCC KW - USP25 KW - FBXW7 KW - Tp63 KW - c-MYC KW - ΔNp63 KW - p53 KW - cancer KW - DUB inhibitor KW - squamous Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248409 SN - 2073-4409 VL - 10 IS - 10 ER - TY - JOUR A1 - Meir, Michael A1 - Kannapin, Felix A1 - Diefenbacher, Markus A1 - Ghoreishi, Yalda A1 - Kollmann, Catherine A1 - Flemming, Sven A1 - Germer, Christoph-Thomas A1 - Waschke, Jens A1 - Leven, Patrick A1 - Schneider, Reiner A1 - Wehner, Sven A1 - Burkard, Natalie A1 - Schlegel, Nicolas T1 - Intestinal epithelial barrier maturation by enteric glial cells is GDNF-dependent JF - International Journal of Molecular Sciences N2 - Enteric glial cells (EGCs) of the enteric nervous system are critically involved in the maintenance of intestinal epithelial barrier function (IEB). The underlying mechanisms remain undefined. Glial cell line-derived neurotrophic factor (GDNF) contributes to IEB maturation and may therefore be the predominant mediator of this process by EGCs. Using GFAP\(^{cre}\) x Ai14\(^{floxed}\) mice to isolate EGCs by Fluorescence-activated cell sorting (FACS), we confirmed that they synthesize GDNF in vivo as well as in primary cultures demonstrating that EGCs are a rich source of GDNF in vivo and in vitro. Co-culture of EGCs with Caco2 cells resulted in IEB maturation which was abrogated when GDNF was either depleted from EGC supernatants, or knocked down in EGCs or when the GDNF receptor RET was blocked. Further, TNFα-induced loss of IEB function in Caco2 cells and in organoids was attenuated by EGC supernatants or by recombinant GDNF. These barrier-protective effects were blunted when using supernatants from GDNF-deficient EGCs or by RET receptor blockade. Together, our data show that EGCs produce GDNF to maintain IEB function in vitro through the RET receptor. KW - enteric glial cells KW - neurotrophic factors KW - intestinal epithelial barrier KW - GDNF5 KW - RET6 KW - inflammatory bowel disease KW - enteric nervous system KW - gut barrier KW - intercellular junctions Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258913 SN - 1422-0067 VL - 22 IS - 4 ER -