TY - THES A1 - Putze, Johannes T1 - Studien zur Verbreitung und genetischen Struktur des Colibactin-Genclusters in Enterobacteriaceae T1 - Distribution and genetic structure of the Colibactin gene cluster in Enterobacteriaceae N2 - Horizontaler Gentransfer zwischen Bakterien – sogar zwischen verschiedenen Spezies – ist ein wichtiger Mechanismus für den Austausch genetischer Information. Dies kann dem Rezipienten einen selektiven Vorteil verleihen, z. B. durch die schnelle Aneignung von Genclustern, die für Pathogenitäts- oder Fitnessfaktoren kodieren. Die Variabilität bakterieller Genome durch Aneignung und Inkorporation genetischen Materials in das Genom trägt somit erheblich zur Evolution von Bakterien bei. Bakterielle Genome neigen allerdings dazu, nutzlose genetische Information zu verlieren und daher kann horizontal erworbener DNA häufig eine distinkte biologische Funktion zugeordnet werden. Das Colibactin-Gencluster, welches zuerst in Escherichia coli gefunden wurde, weist mehrere Charakteristika einer horizontal erworbenen genomischen Insel auf. Die Größe dieser genomischen Insel beträgt 54 kb und sie umfasst 20 offene Leseraster (ORFs), von denen acht für putative Polyketidsynthasen (PKS), nichtribosomale Peptidsynthasen (NRPS) und Hybride dieser kodieren. Colibactin übt einen zytopathischen Effekt (CPE) auf eukaryotische Zellen in vitro aus. Nach Kokultivierung Colibactin-Gencluster-positiven Bakterien mit eukaryotischen Zellen kommt es zu DNA Doppelstrang Brüchen, Zellzyklus-Arrest in der G2-Phase, Megalozytose und schließlich zum Zelltod. Diese Effekte sind mit denen des Zyklomodulins „Cytolethal Distending Toxin“ (CDT) vergleichbar, allerdings konnte die biologische Funktion des Colibactins in vivo bisher nicht aufgeklärt werden. Das Colibactin-Gencluster wurde bisher nur in Escherichia coli Stämmen der phylogenetischen Gruppe B2 als individuelle genomische Insel, integriert im tRNA-asnW-Gen, vorgefunden. Im Rahmen dieser Arbeit konnte das Colibactin-Gencluster auch in E. coli der phylogenetischen Gruppe B1 und in Citrobacter koseri, Enterobacter aerogenes und Klebsiella pneumoniae subsp. pneumoniae nachgewiesen werden. In diesen Bakterienstämmen ist das Colibactin-Gencluster Teil eines genetischen Elements, das Ähnlichkeit zu integrativen und konjugativen Elementen (ICE) aus E. coli und K. pneumoniae aufweist. Im Gegensatz zur hochkonservierten Integrationsstelle des Colibactin-Genclusters in tRNA-asnW in E. coli der phylogenetischen Gruppe B2 konnte die Integrationsstelle dieses ICE in E. coli der Gruppe B1 in tRNA-asnU bestimmt werden. In Bakterienstämmen der Spezies K. pneumoniae subsp. pneumoniae wurden vier verschiedene Integrationsstellen in fünf analysierten Stämmen identifiziert. Neben der Studien zur Verbreitung und chromosomalen Integration des Colibactin-Genclusters wurden Kolonisierungsstudien im murinen streptomycinbehandelten Intestinaltrakt mit E. coli Stamm Nissle 1917 durchgeführt, um eine mögliche Funktion des Colibactins im Darmtrakt näher zu untersuchen. Weder in nicht-kompetitiven noch in kompetitiven Versuchsdurchführungen konnte dabei ein Kolonisierungsvorteil durch Colibactin nachgewiesen werden. Die Ergebnisse dieser Arbeit haben gezeigt, dass das Colibactin-Gencluster in verschiedenen Spezies der Enterobacteriaceae vorhanden und funktional ist. Das Auftreten dieses sowohl als individuelle genomische Insel als auch als Teil eines ICE veranschaulicht die genetische Plastizität dieses Elements und die Bedeutung des horizontalen Transfers genetischen Materials. Die biologische Funktion des Colibactins in vivo bleibt weiterhin unklar und könnte sowohl die bakterielle Fitness als auch die Virulenz beeinflussen. N2 - Horizontal gene transfer between bacteria – even between different species – has been shown to be an important mechanism for exchange of genetic material. This may confer a selective advantage to the recipient, e. g. the rapid acquisition of gene clusters coding for pathogenicity or fitness factors. The variability of bacterial genomes enabled by acquisition and incorporation of genetic material into their genome contributes considerably to bacterial evolution. Bacterial genomes tend to lose useless genetic information and therefore horizontally acquired DNA can most frequently be connected to a distinct biological function. The colibactin gene cluster initially discovered in Escherichia coli displays several features of a horizontally acquired genomic island. This genomic island is approximately 54 kb in size and consists of 20 open reading frames (ORFs), of which eight code for putative polyketide synthases (PKS), non-ribosomal peptide synthases (NRPS) and hybrids thereof. The synthesized hybrid non-ribosomal peptide-polyketide colibactin exerts a cytopathic effect (CPE) on eukaryotic cells, DNA double strand breaks are induced, the cells are arrested in the G2-phase of the cell cycle and exhibit megalocytosis and cell death. These effects are comparable to the effects of the cyclomodulin cytolethal distending toxin (CDT), but the biological function of colibactin in vivo is still unknown. So far the colibactin gene cluster has only been found in Escherichia coli strains of the phylogenetic lineage B2 as an individual genomic island integrated at the tRNA-asnW gene. In context of this thesis the colibactin gene cluster could be identified in E. coli strains of the phylogenetic group B1 as well as in Citrobacter koseri, Enterobacter aerogenes and Klebsiella pneumoniae subsp. pneumoniae. In those bacterial strains the colibactin gene cluster is part of a genetic element, which exhibits similarities to integrative and conjugative elements (ICE) previously described in E. coli and K. pneumoniae. In contrast to the highly conserved integration site of the colibactin gene cluster at tRNA-asnW in E. coli of the phylogenetic lineage B2, integration at tRNA-asnU was determined in E. coli of group B1. In bacterial strains of the species K. pneumoniae subsp. pneumoniae four different integration sites in a total of five strains were identified. Besides the surveys concerning the distribution and chromosomal integration of the colibactin gene cluster colonization studies of the murine streptomycin-treated intestinal tract were conducted using E. coli strain Nissle 1917 to examine a possible effect of colibactin in this context. However, there was no evidence providing a colibactin-related advantage during colonization neither in non-competitive nor in competitive experimental setups. In this thesis the existence and functionality of the colibactin gene cluster within different species of the Enterobacteriaceae was shown. Its occurrence as an individual genomic island as well as a part of an ICE demonstrates the genetic plasticity of this element and the impact of horizontally transferred genetic material. The biological function of colibactin in vivo remains to be elucidated and may affect both bacterial fitness and virulence. KW - Enterobacteriaceae KW - Horizontaler Gentransfer KW - Colibactin KW - HGT KW - Colibactin KW - HGT Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47259 ER - TY - JOUR A1 - Moremi, Nyambura A1 - Claus, Heike A1 - Vogel, Ulrich A1 - Mshana, Stephen E. T1 - Faecal carriage of CTX-M extended-spectrum beta-lactamase-producing Enterobacteriaceae among street children dwelling in Mwanza city, Tanzania JF - PLoS ONE N2 - Background Data on ESBL carriage of healthy people including children are scarce especially in developing countries. We analyzed the prevalence and genotypes of ESBL-producing Enterobacteriaceae (EPE) in Tanzanian street children with rare contact to healthcare facilities but significant interactions with the environment, animals and other people. Methodology/ Principle findings Between April and July 2015, stool samples of 107 street children, who live in urban Mwanza were analyzed for EPE. Intestinal carriage of EPE was found in 34 (31.8%, 95% CI; 22.7–40.3) children. Of the 36 isolates from 34 children, 30 (83.3%) were Escherichia coli (E. coli) and six Klebsiella pneumoniae (K. pneumoniae). Out of 36 isolates, 36 (100%), 35 (97%), 25 (69%) and 16 (44%) were resistant to tetracycline, trimethoprim-sulfamethoxazole, ciprofloxacin and gentamicin, respectively. Beta-lactamase genes and the multilocus sequence types of E. coli and K. pneumoniae were characterized. ESBL gene bla\(_{CTX-M-15}\) was detected in 75% (27/36) of ESBL isolates. Sequence types (STs) 131, 10, 448 and 617 were the most prevalent in E. coli. Use of local herbs (OR: 3.5, 95% CI: 1.51–8.08, P = 0.003) and spending day and night on streets (OR: 3.6, 95% CI: 1.44–8.97, P = 0.005) were independent predictors of ESBL carriage. Conclusions/ Significance We observed a high prevalence of bla\(_{CTX-M-15}\) in EPE collected from street children in Tanzania. Detection of E. coli STs 131, 10, 38 and 648, which have been observed worldwide in animals and people, highlights the need for multidisciplinary approaches to understand the epidemiology and drivers of antimicrobial resistance in low-income countries. KW - Tanzania KW - children KW - Enterobacteriaceae KW - ESBL Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170331 VL - 12 IS - 9 ER - TY - THES A1 - Masota, Nelson Enos T1 - The Search for Novel Effective Agents Against Multidrug-Resistant Enterobacteriaceae T1 - Die Suche nach neuen wirksamen Wirkstoffen gegen multiresistente Enterobacteriaceae N2 - This thesis aimed at searching for new effective agents against Multidrug-Resistant Enterobacteriaceae. This is necessitated by the urgent need for new and innovative antibacterial agents addressing the critical priority pathogens prescribed by the World Health Organization (WHO). Among the available means for antibiotics discovery and development, nature has long remained a proven, innovative, and highly reliable gateway to successful antibacterial agents. Nevertheless, numerous challenges surrounding this valuable source of antibiotics among other drugs are limiting the complete realization of its potential. These include the availability of good quality data on the highly potential natural sources, limitations in methods to prepare and screen crude extracts, bottlenecks in reproducing biological potentials observed in natural sources, as well as hurdles in isolation, purification, and characterization of natural compounds with diverse structural complexities. Through an extensive review of the literature, it was possible to prepare libraries of plant species and phytochemicals with reported high potentials against Escherichia coli and Klebsiella pneumnoniae. The libraries were profiled to highlight the existing patterns and relationships between the reported antibacterial activities and studied plants’ families and parts, the type of the extracting solvent, as well as phytochemicals’ classes, drug-likeness and selected parameters for enhanced accumulation within the Gram-negative bacteria. In addition, motivations, objectives, the role of traditional practices and other crucial experimental aspects in the screening of plant extracts for antibacterial activities were identified and discussed. Based on the implemented strict inclusion criteria, the created libraries grant speedy access to well-evaluated plant species and phytochemicals with potential antibacterial activities. This way, further studies in yet unexplored directions can be pursued from the indicated or related species and compounds. Moreover, the availability of compound libraries focusing on related bacterial species serves a great role in the ongoing efforts to develop the rules of antibiotics penetrability and accumulation, particularly among Gram-negative bacteria. Here, in addition to hunting for potential scaffolds from such libraries, detailed evaluations of large pool compounds with related antibacterial potential can grant a better understanding of structural features crucial for their penetration and accumulation. Based on the scarcity of compounds with broad structural diversity and activity against Gram-negative bacteria, the creation and updating of such libraries remain a laborious but important undertaking. A Pressurized Microwave Assisted Extraction (PMAE) method over a short duration and low-temperature conditions was developed and compared to the conventional cold maceration over a prolonged duration. This method aimed at addressing the key challenges associated with conventional extraction methods which require long extraction durations, and use more energy and solvents, in addition to larger quantities of plant materials. Furthermore, the method was intended to replace the common use of high temperatures in most of the current MAE applications. Interestingly, the yields of 16 of 18 plant samples under PMAE over 30 minutes were found to be within 91–139% of those obtained from the 24h extraction by maceration. Additionally, different levels of selectivity were observed upon an analytical comparison of the extracts obtained from the two methods. Although each method indicated selective extraction of higher quantities or additional types of certain phytochemicals, a slightly larger number of additional compounds were observed under maceration. The use of this method allows efficient extraction of a large number of samples while sparing heat-sensitive compounds and minimizing chances for cross-reactions between phytochemicals. Moreover, findings from another investigation highlighted the low likelihood of reproducing antibacterial activities previously reported among various plant species, identified the key drivers of poor reproducibility, and proposed possible measures to mitigate the challenge. The majority of extracts showed no activities up to the highest tested concentration of 1024 µg/mL. In the case of identical plant species, some activities were observed only in 15% of the extracts, in which the Minimum Inhibitory Concentrations (MICs) were 4 – 16-fold higher than those in previous reports. Evaluation of related plant species indicated better outcomes, whereby about 18% of the extracts showed activities in a range of 128–512 μg/mL, some of the activities being superior to those previously reported in related species. Furthermore, solubilizing plant crude extracts during the preparation of test solutions for Antibacterial Susceptibility Testing (AST) assays was outlined as a key challenge. In trying to address this challenge, some studies have used bacteria-toxic solvents or generally unacceptable concentrations of common solubilizing agents. Both approaches are liable to give false positive results. In line with this challenge, this study has underscored the suitability of acetone in the solubilization of crude plant extracts. Using acetone, better solubility profiles of crude plant extracts were observed compared to dimethyl sulfoxide (DMSO) at up to 10 %v/v. Based on lacking toxicity against many bacteria species at up to 25 %v/v, its use in the solubilization of poorly water-soluble extracts, particularly those from less polar solvents is advocated. In a subsequent study, four galloylglucoses were isolated from the leaves of Paeonia officinalis L., whereby the isolation of three of them from this source was reported for the first time. The isolation and characterization of these compounds were driven by the crucial need to continually fill the pre-clinical antibiotics pipeline using all available means. Application of the bioautography-guided isolation and a matrix of extractive, chromatographic, spectroscopic, and spectrometric techniques enabled the isolation of the compounds at high purity levels and the ascertainment of their chemical structures. Further, the compounds exhibited the Minimum Inhibitory Concentrations (MIC) in a range of 2–256 µg/mL against Multidrug-Resistant (MDR) strains of E. coli and K. pneumonia exhibiting diverse MDR phenotypes. In that, the antibacterial activities of three of the isolated compounds were reported for the first time. The observed in vitro activities of the compounds resonated with their in vivo potentials as determined using the Galleria mellonella larvae model. Additionally, the susceptibility of the MDR bacteria to the galloylglucoses was noted to vary depending on the nature of the resistance enzymes expressed by the MDR bacteria. In that, the bacteria expressing enzymes with higher content of aromatic amino acids and zero or positive net charges were generally more susceptible. Following these findings, a plausible hypothesis for the observed patterns was put forward. The generally challenging pharmacokinetic properties of galloylglucoses limit their further development into therapeutic agents. However, the compounds can replace or reduce the use of antibiotics in livestock keeping as well as in the treatment of septic wounds and topical or oral cavity infections, among other potential uses. Using nature-inspired approaches, a series of glucovanillin derivatives were prepared following feasible synthetic pathways which in most cases ensured good yields and high purity levels. Some of the prepared compounds showed MIC values in a range of 128 – 512 μg/mL against susceptible and MDR strains of Klebsiella pneumoniae, Methicillin-Resistant Staphylococcus aureus (MRSA) and Vancomycin-Resistant Enterococcus faecium (VRE). These findings emphasize the previously reported essence of small molecular size, the presence of protonatable amino groups and halogen atoms, as well as an amphiphilic character, as crucial features for potential antibacterial agents. Due to the experienced limited success in the search for new antibacterial agents using purely synthetic means, pursuing semi-synthetic approaches as employed in this study are highly encouraged. This way, it is possible to explore broader chemical spaces around natural scaffolds while addressing their inherent limitations such as solubility, toxicity, and poor pharmacokinetic profiles. N2 - Ziel dieser Arbeit war die Suche nach neuen wirksamen Antiinfektiva gegen multiresistente Enterobacteriaceae. Grund dafür ist der dringende Bedarf an neuen und innovativen antibakteriellen Wirkstoffen gegen die von der Weltgesundheitsorganisation (WHO) als vorrangig eingestuften Krankheitserreger. Unter den verfügbaren Methoden zur Entdeckung und Entwicklung von Antibiotika ist die Natur seit langem ein bewährtes, innovatives und äußerst zuverlässiges Mittel, um erfolgreich zu antibakteriellen Wirkstoffen zu gelangen. Dennoch stehen dieser wertvollen Quelle von Antibiotika und anderen Arzneimitteln zahlreiche Herausforderungen gegenüber, die die vollständige Ausschöpfung ihres Potenzials einschränken. Dazu gehören die Verfügbarkeit qualitativ hochwertiger Daten über die hochpotenten natürlichen Quellen, Einschränkungen bei den Methoden zur Herstellung und zum Screening von Rohextrakten, Engpässe bei der Reproduktion des in natürlichen Quellen beobachteten biologischen Potenzials sowie Hürden bei der Isolierung, Reinigung und Charakterisierung von Naturstoffen mit unterschiedlicher struktureller Komplexität. Mittels einer umfassenden Durchsicht der Literatur war es möglich, Bibliotheken mit Pflanzenarten und Phytochemikalien zu erstellen, die ein hohes Potenzial gegen Escherichia coli und Klebsiella pneumnonia aufweisen. Die Bibliotheken wurden profiliert, um die bestehenden Muster und Beziehungen zwischen den berichteten antibakteriellen Aktivitäten und den untersuchten Pflanzenfamilien und -teilen, der Art des Extraktionslösungsmittels sowie den Klassen der Phytochemikalien, der Wirkstoffähnlichkeit und ausgewählten Parametern für eine verstärkte Akkumulation in den gramnegativen Bakterien aufzuzeigen. Darüber hinaus wurden Motivationen, Ziele, die Rolle traditioneller Methoden und andere wichtige experimentelle Aspekte beim Screening von Pflanzenextrakten auf antibakterielle Aktivitäten identifiziert und diskutiert. Auf der Grundlage der strengen Aufnahmekriterien bieten die erstellten Bibliotheken einen schnellen Zugang zu gut bewerteten Pflanzenarten und Phytochemikalien mit potenziellen antibakteriellen Aktivitäten. Auf diese Weise können weitere Studien in noch unerforschten Richtungen mit den angegebenen oder ähnlichen Arten und Verbindungen durchgeführt werden. Darüber hinaus spielt die Verfügbarkeit von Substanzbibliotheken, die sich auf verwandte Bakterienarten konzentrieren, eine große Rolle bei den laufenden Bemühungen, die Regeln für die Penetration und Akkumulation von Antibiotika zu entwickeln, insbesondere bei gramnegativen Bakterien. Neben der Suche nach potenziellen Molekülgerüsten aus solchen Bibliotheken können detaillierte Bewertungen großer Pools von Verbindungen mit antibakteriellem Potenzial ein besseres Verständnis der strukturellen Merkmale ermöglichen, die für ihre Penetration und Akkumulation entscheidend sind. Da es kaum Verbindungen mit breiter struktureller Vielfalt und Aktivität gegen gramnegative Bakterien gibt, ist die Erstellung und Aktualisierung solcher Bibliotheken nach wie vor ein mühsames, aber wichtiges Unterfangen. Es wurde eine schnelle mikrowellenunterstützte Extraktionsmethode unter Druck (PMAE) und bei niedrigen Temperaturen entwickelt und mit der herkömmlichen Kaltmazeration mit längerer andauernd verglichen. Mit der PMAE-Methode sollten die wichtigsten Probleme herkömmlicher Extraktionsmethoden gelöst werden, die eine lange Extraktionsdauer erfordern, mehr Energie und Lösungsmittel verbrauchen und zudem größere Mengen an Pflanzenmaterial benötigen. Darüber hinaus sollte die Methode die übliche Verwendung hoher Temperaturen in den meisten der derzeitigen MAE-Anwendungen ersetzen. Interessanterweise lag die Ausbeute von 16 der 18 Pflanzenproben bei der 30-minütigen PMAE zwischen 91 und 139 % der jenigen, die bei der 24-stündigen Extraktion durch Mazeration erzielt wurde. Darüber hinaus wurden bei einem analytischen Vergleich der mit den beiden Methoden gewonnenen Extrakte unterschiedliche Selektivitätsgrade festgestellt. Obwohl jede Methode eine selektive Extraktion größere Mengen oder zusätzlicher Arten bestimmter Phytochemikalien anzeigte, wurde bei der Mazeration eine etwas größere Anzahl an Verbindungen beobachtet. Die Anwendung dieser PMAE-Methode ermöglicht eine effiziente Extraktion einer großen Anzahl von Proben, wobei hitzeempfindliche Verbindungen geschont werden und die Wahrscheinlichkeit von Kreuzreaktionen zwischen Phytochemikalien minimiert wird. Die weitere Untersuchung von Pflanzenextraktionen haben die geringe Reproduzierbarkeit von antibakteriellen Aktivitäten, die zuvor für verschiedene Pflanzenarten berichtet wurden, aufgedeckt, die Hauptursachen für die schlechte Reproduzierbarkeit identifiziert und mögliche Maßnahmen zur Minimierung dieser Herausforderung vorgeschlagen. Die Mehrheit der Extrakte zeigte bis zur höchsten getesteten Konzentration von 1024 µg/ml keine Aktivitäten. Bei identischen Pflanzenarten wurden nur bei 15 % der Extrakte gewisse Aktivitäten beobachtet, wobei die minimalen Hemmkonzentrationen (MHK) um das Vier- bis 16-fache höher waren als in früheren Berichten. Die Auswertung verwandter Pflanzenarten zeigte geringfügig bessere Ergebnisse, wobei etwa lagen 18 % der Extrakte Aktivitäten in einem Bereich von 128-512 µg/ml aufwiesen; dabei einige der Aktivitäten über denen, die zuvor bei verwandten Arten berichtet wurden. Darüber hinaus wurde die Löslichkeit von Pflanzenrohextrakten bei der Herstellung von Testlösungen für die Bestimmung der Antimikrobischen Suszeptibilität (AST) als eine der größten Herausforderungen bezeichnet. Bei dem Versuch, diese Herausforderung zu bewältigen, wurden in einigen Studien bakterientoxische Lösungsmittel oder allgemein inakzeptable Konzentrationen gängiger Lösungsvermittler verwendet. Beide Ansätze können zu falsch-positiven Ergebnissen führen. Deshalb hat diese Studie die Eignung von Aceton für die Solubilisierung von Pflanzenrohextrakten unterstrichen. Bei Verwendung von Aceton wurden eine bessere Löslichkeit der Pflanzenrohextrakten im Vergleich zu Dimethylsulfoxid (DMSO) bei bis zu 10 % v/v beobachtet. Aufgrund der fehlenden Toxizität gegen viele Bakterienarten bei bis zu 25 % v/v wird die Verwendung von Aceton für die Solubilisierung schwer wasserlöslicher Extrakte, insbesondere solcher aus weniger polaren Lösungsmitteln, befürwortet. In der nachfolgenden Untersuchung wurden vier Galloylglucosen aus den Blättern von Paeonia officinalis L. isoliert, wobei von drei Substanzen aus dieser Quelle zum ersten Mal berichtet wurde. Die Isolierung und Charakterisierung dieser Verbindungen wurden durch die dringende Notwendigkeit vorangetrieben, die präklinische Antibiotika-Pipeline mit allen verfügbaren Methoden zu füllen. Die Anwendung der bioautographisch gesteuerten Isolierung und einer Matrix aus extraktiven, chromatographischen, spektroskopischen und spektrometrischen Techniken ermöglichte die Isolierung der Verbindungen mit hohem Reinheitsgrad und die Bestimmung ihrer chemischen Strukturen. Darüber hinaus wiesen die Verbindungen minimale Hemmkonzentrationen (MHK) in einem Bereich von 2-256 µg/ml gegen multiresistente (MDR) Stämme von E. coli und K. pneumonia auf, die verschiedene MDR-Phänotypen aufweisen. Über die antibakteriellen Aktivitäten von drei der isolierten Verbindungen wurde zum ersten Mal berichtet. Die beobachteten In-vitro-Aktivitäten der Verbindungen stimmten mit ihren In-vivo-Potenzialen überein, die anhand des Galleria mellonella-Larvenmodells ermittelt wurden. Darüber hinaus wurde festgestellt, dass die Empfindlichkeit der MDR-Bakterien gegenüber den Galloylglucosen von der Art der von den MDR-Bakterien exprimierten Resistenzenzyme abhängt. So waren die Bakterien, die Enzyme mit einem höheren Gehalt an aromatischen Aminosäuren und null oder positiven Nettoladungen exprimieren, im Allgemeinen anfälliger. Nach diesen Erkenntnissen wurde eine plausible Hypothese für die beobachteten Muster aufgestellt. Die allgemein schwierigen pharmakokinetischen Eigenschaften von Galloylglucosen schränken ihre weitere Entwicklung als therapeutischen Wirkstoffen ein. Die Verbindungen können jedoch den Einsatz von Antibiotika in der Tierhaltung sowie bei der Behandlung von septischen Wunden und Infektionen der Haut oder der Mundhöhle ersetzen oder reduzieren, neben anderen potenziellen Anwendungen. Mit von der Natur inspirierten Ansätzen wurde eine Reihe von Glucovanillin-Derivaten synthetisch hergestellt. Einige der neuen Verbindungen wiesen MHK-Werte im Bereich von 128 - 512 μg/ml gegen empfindliche und MDR-Stämme von Klebsiella pneumoniae, Methicillin-resistentem Staphylococcus aureus (MRSA) und Vancomycin-resistentem Enterococcus faecium (VRE) auf. Diese Ergebnisse unterstreichen die bereits früher berichtete Bedeutung einer kleinen Molekülgröße, des Vorhandenseins protonierbarer Aminogruppen und Halogenatome sowie eines amphiphilen Charakters als entscheidende Merkmale für potenzielle antibakterielle Wirkstoffe. Da die Suche nach neuen antibakteriellen Wirkstoffen mit rein synthetischen Mitteln bisher nur begrenzt erfolgreich war, sind halbsynthetische Ansätze, wie sie in dieser Studie verwendet wurden, sehr zu empfehlen. Auf diese Weise ist es möglich, größere chemische Räume um natürliche Molekülgerüste herum zu erforschen und gleichzeitig deren inhärente Einschränkungen wie Löslichkeit, Toxizität und schlechte pharmakokinetische Profile zu überwinden. KW - Enterobacteriaceae KW - Pflanzen KW - Synthese KW - Multidrugresistant KW - Plant extracts KW - Isolation and Characterization KW - Microwave Assisted Extraction KW - Nature-Insipired Synthesis KW - Reproducibility challenges KW - Library of Phytochemicals KW - Library of plant species KW - Plants KW - Characterization KW - Synthesis Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-302632 ER - TY - JOUR A1 - Masota, Nelson E. A1 - Ohlsen, Knut A1 - Schollmayer, Curd A1 - Meinel, Lorenz A1 - Holzgrabe, Ulrike T1 - Isolation and characterization of galloylglucoses effective against multidrug-resistant strains of Escherichia coli and Klebsiella pneumoniae JF - Molecules N2 - The search for new antibiotics against multidrug-resistant (MDR), Gram-negative bacteria is crucial with respect to filling the antibiotics development pipeline, which is subject to a critical shortage of novel molecules. Screening of natural products is a promising approach for identifying antimicrobial compounds hosting a higher degree of novelty. Here, we report the isolation and characterization of four galloylglucoses active against different MDR strains of Escherichia coli and Klebsiella pneumoniae. A crude acetone extract was prepared from Paeonia officinalis Linnaeus leaves, and bioautography-guided isolation of active compounds from the extract was performed by liquid–liquid extraction, as well as open column, flash, and preparative chromatographic methods. Isolated active compounds were characterized and elucidated by a combination of spectroscopic and spectrometric techniques. In vitro antimicrobial susceptibility testing was carried out on E. coli and K. pneumoniae using 2 reference strains and 13 strains hosting a wide range of MDR phenotypes. Furthermore, in vivo antibacterial activities were assessed using Galleria mellonella larvae, and compounds 1,2,3,4,6-penta-O-galloyl-β-d-glucose, 3-O-digalloyl-1,2,4,6-tetra-O-galloyl-β-d-glucose, 6-O-digalloyl-1,2,3,4-tetra-O-galloyl-β-d-glucose, and 3,6-bis-O-digalloyl-1,2,4-tri-O-galloyl-β-d-glucose were isolated and characterized. They showed minimum inhibitory concentration (MIC) values in the range of 2–256 µg/mL across tested bacterial strains. These findings have added to the number of known galloylglucoses from P. officinalis and highlight their potential against MDR Gram-negative bacteria. KW - antimicrobial resistance KW - Enterobacteriaceae KW - Paeonia KW - gallotannins KW - isolation KW - structural elucidation KW - Escherichia coli KW - Klebsiella pneumoniae Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286179 SN - 1420-3049 VL - 27 IS - 15 ER - TY - JOUR A1 - Friedrich, Torben A1 - Rahmann, Sven A1 - Weigel, Wilfried A1 - Rabsch, Wolfgang A1 - Fruth, Angelika A1 - Ron, Eliora A1 - Gunzer, Florian A1 - Dandekar, Thomas A1 - Hacker, Joerg A1 - Mueller, Tobias A1 - Dobrindt, Ulrich T1 - High-throughput microarray technology in diagnostics of enterobacteria based on genome-wide probe selection and regression analysis N2 - The Enterobacteriaceae comprise a large number of clinically relevant species with several individual subspecies. Overlapping virulence-associated gene pools and the high overall genome plasticity often interferes with correct enterobacterial strain typing and risk assessment. Array technology offers a fast, reproducible and standardisable means for bacterial typing and thus provides many advantages for bacterial diagnostics, risk assessment and surveillance. The development of highly discriminative broad-range microbial diagnostic microarrays remains a challenge, because of marked genome plasticity of many bacterial pathogens. Results: We developed a DNA microarray for strain typing and detection of major antimicrobial resistance genes of clinically relevant enterobacteria. For this purpose, we applied a global genome-wide probe selection strategy on 32 available complete enterobacterial genomes combined with a regression model for pathogen classification. The discriminative power of the probe set was further tested in silico on 15 additional complete enterobacterial genome sequences. DNA microarrays based on the selected probes were used to type 92 clinical enterobacterial isolates. Phenotypic tests confirmed the array-based typing results and corroborate that the selected probes allowed correct typing and prediction of major antibiotic resistances of clinically relevant Enterobacteriaceae, including the subspecies level, e.g. the reliable distinction of different E. coli pathotypes. Conclusions: Our results demonstrate that the global probe selection approach based on longest common factor statistics as well as the design of a DNA microarray with a restricted set of discriminative probes enables robust discrimination of different enterobacterial variants and represents a proof of concept that can be adopted for diagnostics of a wide range of microbial pathogens. Our approach circumvents misclassifications arising from the application of virulence markers, which are highly affected by horizontal gene transfer. Moreover, a broad range of pathogens have been covered by an efficient probe set size enabling the design of high-throughput diagnostics. KW - Mikroarray KW - Enterobacteriaceae Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-67936 ER - TY - THES A1 - Friedrich, Torben T1 - New statistical Methods of Genome-Scale Data Analysis in Life Science - Applications to enterobacterial Diagnostics, Meta-Analysis of Arabidopsis thaliana Gene Expression and functional Sequence Annotation T1 - Neue statistische Methoden für genomweite Datenanalysen in den Biowissenschaften - Anwendungen in der Enterobakteriendiagnostik, Meta-Analyse von Arabidopsis thaliana Genexpression und funktionsbezogenen Sequenzannotation N2 - Recent progresses and developments in molecular biology provide a wealth of new but insufficiently characterised data. This fund comprises amongst others biological data of genomic DNA, protein sequences, 3-dimensional protein structures as well as profiles of gene expression. In the present work, this information is used to develop new methods for the characterisation and classification of organisms and whole groups of organisms as well as to enhance the automated gain and transfer of information. The first two presented approaches (chapters 4 und 5) focus on the medically and scientifically important enterobacteria. Its impact in medicine and molecular biology is founded in versatile mechanisms of infection, their fundamental function as a commensal inhabitant of the intestinal tract and their use as model organisms as they are easy to cultivate. Despite many studies on single pathogroups with clinical distinguishable pathologies, the genotypic factors that contribute to their diversity are still partially unknown. The comprehensive genome comparison described in Chapter 4 was conducted with numerous enterobacterial strains, which cover nearly the whole range of clinically relevant diversity. The genome comparison constitutes the basis of a characterisation of the enterobacterial gene pool, of a reconstruction of evolutionary processes and of comprehensive analysis of specific protein families in enterobacterial subgroups. Correspondence analysis, which is applied for the first time in this context, yields qualitative statements to bacterial subgroups and the respective, exclusively present protein families. Specific protein families were identified for the three major subgroups of enterobacteria namely the genera Yersinia and Salmonella as well as to the group of Shigella and E. coli by applying statistical tests. In conclusion, the genome comparison-based methods provide new starting points to infer specific genotypic traits of bacterial groups from the transfer of functional annotation. Due to the high medical importance of enterobacterial isolates their classification according to pathogenicity has been in focus of many studies. The microarray technology offers a fast, reproducible and standardisable means of bacterial typing and has been proved in bacterial diagnostics, risk assessment and surveillance. The design of the diagnostic microarray of enterobacteria described in chapter 5 is based on the availability of numerous enterobacterial genome sequences. A novel probe selection strategy based on the highly efficient algorithm of string search, which considers both coding and non-coding regions of genomic DNA, enhances pathogroup detection. This principle reduces the risk of incorrect typing due to restrictions to virulence-associated capture probes. Additional capture probes extend the spectrum of applications of the microarray to simultaneous diagnostic or surveillance of antimicrobial resistance. Comprehensive test hybridisations largely confirm the reliability of the selected capture probes and its ability to robustly classify enterobacterial strains according to pathogenicity. Moreover, the tests constitute the basis of the training of a regression model for the classification of pathogroups and hybridised amounts of DNA. The regression model features a continuous learning capacity leading to an enhancement of the prediction accuracy in the process of its application. A fraction of the capture probes represents intergenic DNA and hence confirms the relevance of the underlying strategy. Interestingly, a large part of the capture probes represents poorly annotated genes suggesting the existence of yet unconsidered factors with importance to the formation of respective virulence phenotypes. Another major field of microarray applications is gene expression analysis. The size of gene expression databases rapidly increased in recent years. Although they provide a wealth of expression data, it remains challenging to integrate results from different studies. In chapter 6 the methodology of an unsupervised meta-analysis of genome-wide A. thaliana gene expression data sets is presented, which yields novel insights in function and regulation of genes. The application of kernel-based principal component analysis in combination with hierarchical clustering identified three major groups of contrasts each sharing overlapping expression profiles. Genes associated with two groups are known to play important roles in Indol-3 acetic acid (IAA) mediated plant growth and development as well as in pathogen defence. Yet uncharacterised serine-threonine kinases could be assigned to novel functions in pathogen defence by meta-analysis. In general, hidden interrelation between genes regulated under different conditions could be unravelled by the described approach. HMMs are applied to the functional characterisation of proteins or the detection of genes in genome sequences. Although HMMs are technically mature and widely applied in computational biology, I demonstrate the methodical optimisation with respect to the modelling accuracy on biological data with various distributions of sequence lengths. The subunits of these models, the states, are associated with a certain holding time being the link to length distributions of represented sequences. An adaptation of simple HMM topologies to bell-shaped length distributions described in chapter 7 was achieved by serial chain-linking of single states, while residing in the class of conventional HMMs. The impact of an optimisation of HMM topologies was underlined by performance evaluations with differently adjusted HMM topologies. In summary, a general methodology was introduced to improve the modelling behaviour of HMMs by topological optimisation with maximum likelihood and a fast and easily implementable moment estimator. Chapter 8 describes the application of HMMs to the prediction of interaction sites in protein domains. As previously demonstrated, these sites are not trivial to predict because of varying degree in conservation of their location and type within the domain family. The prediction of interaction sites in protein domains is achieved by a newly defined HMM topology, which incorporates both sequence and structure information. Posterior decoding is applied to the prediction of interaction sites providing additional information of the probability of an interaction for all sequence positions. The implementation of interaction profile HMMs (ipHMMs) is based on the well established profile HMMs and inherits its known efficiency and sensitivity. The large-scale prediction of interaction sites by ipHMMs explained protein dysfunctions caused by mutations that are associated to inheritable diseases like different types of cancer or muscular dystrophy. As already demonstrated by profile HMMs, the ipHMMs are suitable for large-scale applications. Overall, the HMM-based method enhances the prediction quality of interaction sites and improves the understanding of the molecular background of inheritable diseases. With respect to current and future requirements I provide large-scale solutions for the characterisation of biological data in this work. All described methods feature a highly portable character, which allows for the transfer to related topics or organisms, respectively. Special emphasis was put on the knowledge transfer facilitated by a steadily increasing wealth of biological information. The applied and developed statistical methods largely provide learning capacities and hence benefit from the gain of knowledge resulting in increased prediction accuracies and reliability. N2 - Die aktuellen Fortschritte und Entwicklungen in der Molekularbiologie stellen eine Fülle neuer, bisher kaum analysierter Daten bereit. Dieser Fundus umfasst unter Anderem biologische Daten zu genomischer DNA, zu Proteinsequenzen, zu dreidimensionalen Proteinstrukturen sowie zu Genexpressionsprofilen. In der vorliegenden Arbeit werden diese Informationen genutzt, um neue Methoden der Charakterisierung und Klassifizierung von Organismen bzw. Organismengruppen zu entwickeln und einen automatisierten Informationsgewinn sowie eine Informationsübertragung zu ermöglichen. Die ersten beiden vorgestellten Ansätze (Kapitel 4 und 5) konzentrieren sich auf die medizinisch und wissenschaftlich bedeutsame Gruppe der Enterobakterien. Deren Bedeutung für Medizin und Mikrobiologie geht auf ihre Funktion als kommensale Bewohner des Darmtraktes, ihre Nutzung als leicht kultivierbare Modellorganismen und auf die vielseitigen Infektionsmechanismen zurück. Obwohl bereits viele Studien über einzelne Pathogruppen mit klinisch unterscheidbaren Symptomen existieren, sind die genotypischen Faktoren, die für diese Unterschiedlichkeit verantwortlich zeichnen, teilweise noch nicht bekannt. Der in Kapitel 4 beschriebene umfassende Genomvergleich wurde anhand einer Vielzahl von Enterobakterien durchgeführt, die nahezu die gesamte Bandbreite klinisch relevanter Diversität darstellen. Dieser Genomvergleich bildet die Basis für eine Charakterisierung des enterobakteriellen Genpools, für eine Rekonstruktion evolutionärer Prozesse und Einflüsse und für eine umfassende Untersuchung spezifischer Proteinfamilien in enterobakteriellen Untergruppen. Die in diesem Kontext vorher noch nicht angewandte Korrespondenzanalyse liefert qualitative Aussagen zu bakteriellen Untergruppen und den ausschließlich in ihnen vorkommenden Proteinfamilien. In drei Hauptuntergruppen der Enterobakterien, die den Gattungen Yersinia und Salmonella sowie der Gruppe aus Shigella und E. coli entsprechen, wurden die jeweils spezifischen Proteinfamilien mit Hilfe statistischer Tests identifiziert. Zusammenfassend bilden die auf Genomvergleichen aufbauenden Methoden neue Ansatzpunkte, um aus der Übertragung der bekannten Funktionalität einzelner Proteine auf spezifische, genotypische Besonderheiten bakterieller Gruppen zu schließen. Aufgrund ihrer hohen medizinischen Relevanz war die Typisierung enterobakterieller Isolate entsprechend ihrer Pathogenität Ziel zahlreicher Studien. Die Microarray-Technologie bietet ein schnelles, reproduzierbares und standardisierbares Hilfsmittel für bakterielle Typisierung und hat sich in der Bakteriendiagnostik, Risikobewertung und Überwachung bewährt. Das in Kapitel 5 beschriebene Design eines diagnostischen Microarray beruht auf einer großen Anzahl verfügbarer Genomsequenzen von Enterobakterien. Ein hocheffizienter String-Matching-Algorithmus ist die Grundlage einer neuartigen Strategie der Sondenauswahl, die sowohl kodierende als auch nicht-kodierende Bereiche genomischer DNA berücksichtigt. Im Vergleich zu Diagnostika, die ausschließlich auf Virulenz-assoziierten Sonden beruhen, verringert dieses Prinzip das Risiko einer inkorrekten Typisierung. Zusätzliche Sonden erweitern das Anwendungsspektrum auf eine simultane Diagnostik der Antibiotikaresistenz bzw. eine Überwachung der Resistenzausbreitung. Umfangreiche Testhybridisierungen belegen eine überwiegende Zuverlässigkeit der Sonden und vor allem eine robuste Klassifizierung enterobakterieller Stämme entsprechend der Pathogruppen. Die Tests bilden zudem die Grundlage für das Training eines Regressionsmodells zur Klassifizierung der Pathogruppe und zur Vorhersage der Menge hybridisierter DNA. Das Regressionsmodell zeichnet sich durch kontinuierliche Lernfähigkeit und damit durch eine Verbesserung der Vorhersagequalität im Prozess der Anwendung aus. Ein Teil der Sonden repräsentiert intergenische DNA und bestätigt infolgedessen die Relevanz der zugrunde liegenden Strategie. Die Tatsache, dass ein großer Teil der von den Sonden repräsentierten Gene noch nicht annotiert ist, legt die Existenz bisher unentdeckter Faktoren mit Bedeutung für die Ausbildung entsprechender Virulenz-Phänotypen nahe. Ein weiteres Haupteinsatzgebiet von Microarrays ist die Genexpressionsanalyse. Die Größe von Genexpressionsdatenbanken ist in den vergangenen Jahren stark gewachsen. Obwohl sie eine Fülle von Expressionsdaten bieten, sind Ergebnisse aus unterschiedlichen Studien weiterhin schwer in einen übergreifenden Zusammenhang zu bringen. In Kapitel 6 wird die Methodik einer ausschließlich datenbasierten Meta-Analyse für genomweite A. thaliana Genexpressionsdatensätze dargestellt, die neue Erkenntnisse über Funktion und Regulation von Genen verspricht. Die Anwendung von Kernel-basierter Hauptkomponentenanalyse in Kombination mit hierarchischem Clustering identifizierte drei Hauptgruppen von Kontrastexperimenten mit jeweils überlappenden Expressionsmustern. In zwei Gruppen konnten deregulierte Gene wichtigen Funktionen bei Indol-3-Essigsäure (IAA) vermitteltem Pflanzenwachstum und -entwicklung sowie pflanzlicher Pathogenabwehr zugeordnet werden. Bisher funktionell nicht näher charakterisierte Serin-Threonin-Kinasen wurden über die Meta-Analyse mit der Pathogenabwehr assoziiert. Grundsätzlich kann dieser Ansatz versteckte Wechselbeziehungen zwischen Genen aufdecken, die unter verschiedenen Bedingungen reguliert werden. Bei der funktionellen Charakterisierung von Proteinen oder der Vorhersage von Genen in Genomsequenzen werden Hidden-Markov-Modelle (HMMs) eingesetzt. HMMs sind technisch ausgereift und in der computergestützten Biologie vielfach eingesetzt worden. Trotzdem birgt die Methodik das Potential zur Optimierung bezüglich der Modellierung biologischer Daten, die hinsichtlich der Längenverteilung ihrer Sequenzen variieren. Untereinheiten dieser Modelle, die Zustände, repräsentieren über ihre individuelle Verweildauer zugrunde liegende Verteilungen von Sequenzlängen. Kapitel 7 stellt eine Methode zur Anpassung einfacher HMM-Topologien an biologische Daten, die glockenkurvenartige Längenverteilungen zeigen, vor. Die Modellierung solcher Verteilungen wird dabei durch eine serielle Verkettung vervielfältigter Zustände gewährleistet, ohne dass die Klasse herkömmlicher HMMs verlassen wird. Auswertungen der Modellierungsleistung bei unterschiedlich stark optimierten HMM-Topologien unterstreichen die Bedeutung der entwickelten Topologieoptimierung. Zusammenfassend wird hier eine generelle Methodik beschrieben, die die Modelleigenschaften von HMMs über Topologieoptimierungen verbessert. Die Parameter dieser Optimierung werden mit Hilfe von Maximum-Likelihood und einem leicht einzubindenden Momentschätzer bestimmt. In Kapitel 8 wird die Anwendung von HMMs zur Vorhersage von Interaktionsstellen in Proteindomänen beschrieben. Wie bereits gezeigt wurde, sind solche Stellen aufgrund einer variablen Konserviertheit ihrer Position und ihres Typs schwer zu bestimmen. Eine Vorhersage von Interaktionstellen in Proteindomänen wird über die Definition einer neuen HMM-Topologie erreicht, die sowohl Sequenz- als auch Strukturdaten einbindet. Interaktionsstellen werden mit einem Posterior-Decoding-Algorithmus vorhergesagt, der zusätzliche Informationen über die Wahrscheinlichkeit einer Interaktion für alle Sequenzpositionen bereitstellt. Die Implementierung der Interaktionsprofil-HMMs (ipHMMs) basiert auf den etablierten Profil-HMMs und erbt deren Effizienz und Sensitivität. Eine groß angelegte Vorhersage von Interaktionsstellen mit ipHMMs konnte mutationsbedingte Fehlfunktionen in Proteinen erklären, die mit vererbbaren Krankheiten wie unterschiedlichen Tumortypen oder Muskeldystrophie assoziiert sind. Wie Profile-HMMs sind auch ipHMMs für groß angelegte Anwendungen geeignet. Insgesamt verbessert die HMM-gestützte Methode sowohl die Vorhersagequalität für Interaktionsstellen als auch das Verständnis molekularer Hintergründe bei vererbbaren Krankheiten. Im Hinblick auf aktuelle und zukünftige Anforderungen stelle ich in dieser Arbeit Lösungsansätze für eine umfassende Charakterisierung großer Mengen biologischer Daten vor. Alle beschriebenen Methoden zeichnen sich durch gute Übertragbarkeit auf verwandte Probleme aus. Besonderes Augenmerk wurde dabei auf den Wissenstransfer gelegt, der durch einen stetig wachsenden Fundus biologischer Information ermöglicht wird. Die angewandten und entwickelten statistischen Methoden sind lernfähig und profitieren von diesem Wissenszuwachs, Vorhersagequalität und Zuverlässigkeit der Ergebnisse verbessern sich. KW - Genomik KW - Hidden-Markov-Modell KW - Enterobacteriaceae KW - Genexpression KW - Microarray KW - Sequenzanalyse KW - diagnostischer Microarray KW - Sequence Analysis KW - diagnostic Microarray Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-39858 ER -