TY - THES A1 - Önal-Hartmann, Cigdem T1 - Emotional Modulation of Motor Memory Formation T1 - Emotionale Modulation des Motorischen Gedächtnises N2 - Hintergründe: Wie eine Vielzahl von Studien belegt, kann das explizite Gedächtnis, das die bewusste Erinnerung an enkodierte Informationen beinhaltet, durch Emotionen beeinflusst werden, und zwar über den Einfluss auf verschiedene Verarbeitungsebenen (Enkodierung, Konsolidierung, Abruf usw.). Bisher wenig untersucht ist, ob und wie Emotionen Vorgänge der motorischen Gedächtnisbildung, die nicht auf bewusster Erinnerung beruhen und sich stattdessen durch Veränderungen im Verhalten darstellen, modulieren. Experiment 1: Das Ziel des ersten Experimentes war es, den Einfluss von Emotionen auf motorisches Lernen zu untersuchen. Vier Gruppen von Probanden mussten in einer motorischen Lernaufgabe schnelle, seitliche Bewegungen mit dem Daumen ausführen. Während dieser Aufgabe hörten die Probanden emotionale Klänge, die in Valenz und Arousal variierten: 1. Valenz negativ/ Arousal niedrig (V-/A-), 2. Valenz negativ/ Arousal hoch (V-/A+), 3. Valenz positiv/ Arousal niedrig (V+/A-), 4. Valenz positiv/ Arousal hoch (V+/A+). Die deskriptive Analyse aller Daten sprach für beste Ergebnisse für das motorische Lernen in der Bedingung V-/A-, aber die Unterschiede zwischen den Bedingungen waren nicht signifikant. Die Interaktion zwischen Valenz und Arousal emotionaler Töne scheint demnach motorische Enkodierungsprozesse zu modulieren, jedoch müssen zukünftige Studien mit unterschiedlichen emotionalen Stimuli die Annahme weiter untersuchen, dass negative Stimuli mit niedrigem Arousal während der Enkodierung einen fördernden Effekt auf das motorische Kurzzeitgedächtnis haben. Experiment 2: Die Absicht des zweiten Experimentes war es, die Auswirkungen emotionaler Interferenzen auf die Konsolidierung beim Sequenzlernen zu untersuchen. Sechs Gruppen von Probanden trainierten zuerst in getrennten Sitzungen eine SRTT-Aufgabe (serial reaction time task). Um die Konsolidierung der neu erlernten Fertigkeit zu modulieren, wurden die Probanden nach dem Training einer von drei unterschiedlichen Klassen emotionaler Stimuli (positiv, negativ oder neutral) ausgesetzt. Diese bestanden aus einem Set emotionaler Bilder, die mit emotional kongruenten Musikstücken oder neutralen Klängen kombiniert waren. Bei den Probandengruppen wurde die emotionale Interferenz nach zwei unterschiedlichen Zeitintervallen realisiert, entweder direkt nach der Trainingssitzung oder sechs Stunden später. 72 Stunden nach der Trainingssitzung wurde jede Gruppe erneut mit der SRTT-Aufgabe getestet. Die Leistung in diesem Nachtest wurde mittels Reaktionszeit und Genauigkeit bei der Ausführung der Zielsequenz analysiert. Die emotionale Interferenz beeinflusste weder die Nachtestergebnisse für die Reaktionszeit noch die für die Genauigkeit. Allerdings konnte eine Steigerung der expliziten Sequenzerkennung durch erregende negative Stimuli festgestellt werden, wenn diese direkt nach der ersten Trainingseinheit (0h) dargeboten wurden. Diese Ergebnisse lassen vermuten, dass die Konsolidierung der expliziten Aspekte prozeduralen Lernens in einer stärkeren Wechselwirkung mit emotionalen Interferenzen stehen könnte als die der impliziten Aspekte. Die Konsolidierung unterschiedlicher Ebenen des Fertigkeitserwerbs könnte demnach von unterschiedlichen Mechanismen gesteuert werden. Da Performanz und explizites Sequenzerkennen nicht korrelierten, vermuten wir, dass implizite und explizite Modalitäten bei der Durchführung der SRTT-Aufgabe nicht komplementär sind. Experiment 3: Es sollte untersucht werden, ob es eine Präferenz der linken Gehirnhemisphäre bei der Kontrolle von Flexionsreaktionen auf positive Stimuli gibt und der rechten Hemisphäre bei der Kontrolle von Extensionsreaktionen auf negative Stimuli. Zu diesem Zweck sollten rechtshändige Probanden einen Joystick zu sich ziehen oder von sich weg drücken, nachdem sie einen positiven oder negativen Stimulus in ihrem linken oder rechten Gesichtsfeld gesehen hatten. Die Flexionsreaktionen waren bei positiven Stimuli schneller, Extensionsreaktion hingegen bei negativen Stimuli. Insgesamt war die Performanz am schnellsten, wenn die emotionalen Stimuli im linken Gesichtsfeld präsentiert wurden. Dieser Vorrang der rechten Gehirnhemisphäre war besonders deutlich für negative Stimuli, wohingegen die Reaktionszeiten auf positive Bilder keine hemisphärische Differenzierung zeigten. Wir konnten keine Interaktion zwischen Gesichtsfeld und Reaktionstyp belegen, auch fand sich keine Dreifachinteraktion zwischen Valenz, Gesichtsfeld und Reaktionstyp. In unserem experimentellen Kontext scheint die Interaktion zwischen Valenz und Gesichtsfeld stärker zu sein als die Interaktion zwischen Valenz und motorischem Verhalten. Auf Grund dieser Ergebnisse vermuten wir, dass unter gewissen Bedingungen eine Hierarchisierung der asymmetrischen Muster Vorrang hat, die möglicherweise andere vorhandene Asymmetrien maskieren könnte. N2 - Background: There is extensive evidence that explicit memory, which involves conscious recall of encoded information, can be modulated by emotions; emotions may influence encoding, consolidation or retrieval of information. However, less is known about the modulatory effects of emotions on procedural processes like motor memory, which do not depend upon conscious recall and are instead demonstrated through changes in behaviour. Experiment 1: The goal of the first experiment was to examine the influence of emotions on motor learning. Four groups of subjects completed a motor learning task performing brisk isometric abductions with their thumb. While performing the motor task, the subjects heard emotional sounds varying in arousal and valence: (1) valence negative / arousal low (V-/A-), (2) valence negative / arousal high (V-/A+), (3) valence positive / arousal low (V+/A-), and (4) valence positive / arousal high (V+/A+). Descriptive analysis of the complete data set showed best performances for motor learning in the V-/A- condition, but the differences between the conditions did not reach significance. Results suggest that the interaction between valence and arousal may modulate motor encoding processes. Since limitations of the study cannot be ruled out, future studies with different emotional stimuli have to test the assumption that exposure to low arousing negative stimuli during encoding has a facilitating effect on short term motor memory. Experiment 2: The purpose of the second experiment was to investigate the effects of emotional interference on consolidation of sequential learning. In different sessions, 6 groups of subjects were initially trained on a serial reaction time task (SRTT). To modulate consolidation of the newly learned skill, subjects were exposed, after the training, to 1 of 3 (positive, negative or neutral) different classes of emotional stimuli which consisted of a set of emotional pictures combined with congruent emotional musical pieces or neutral sound. Emotional intervention for each subject group was done in 2 different time intervals (either directly after the training session, or 6 h later). After a 72 h post-training interval, each group was retested on the SRTT. Re-test performance was evaluated in terms of response times and accuracy during performance of the target sequence. Emotional intervention did not influence either response times or accuracy of re-testing SRTT task performance. However, explicit awareness of sequence knowledge was enhanced by arousing negative stimuli applied at 0 h after training. These findings suggest that consolidation of explicit aspects of procedural learning may be more responsive toward emotional interference than are implicit aspects. Consolidation of different domains of skill acquisition may be governed by different mechanisms. Since skill performance did not correlate with explicit awareness we suggest that implicit and explicit modes of SRTT performance are not complementary. Experiment 3: The aim of the third experiment was to analyze if the left hemisphere preferentially controls flexion responses towards positive stimuli, while the right hemisphere is specialized towards extensor responses to negative pictures. To this end, right-handed subjects had to pull or push a joystick subsequent to seeing a positive or a negative stimulus in their left or right hemifield. Flexion responses were faster for positive stimuli, while negative stimuli were associated with faster extensions responses. Overall, performance was fastest when emotional stimuli were presented to the left visual hemifield. This right hemisphere superiority was especially clear for negative stimuli, while reaction times towards positive pictures showed no hemispheric difference. We did not find any interaction between hemifield and response type. Neither was there a triple interaction between valence, hemifield and response type. In our experimental context the interaction between valence and hemifield seems to be stronger than the interaction between valence and motor behaviour. From these results we suppose that under certain conditions a hierarchy scaling of the asymmetry patterns prevails, which might mask any other existing asymmetries. KW - Motorisches Lernen KW - Gefühl KW - Motorisches Gedächtnis KW - Emotionen KW - Konsolidierung KW - Motor Memory KW - Emotion Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-64838 ER - TY - THES A1 - Stößel, Anna T1 - Auswirkungen zerebellärer Gleichstromstimulation auf das motorische Lernen bei gesunden älteren Probanden T1 - Effects of cerebellar anodal transcranial direct current stimulation on motor learning in healthy older adults N2 - Sowohl neurologische Erkrankungen als auch der natürliche Alterungsprozess gehen regelhaft mit einem Untergang von Neuronen einher und bedingen neurologische Funktionsverluste. Diese mit Hilfe nicht-invasiver Techniken, beispielsweise tDCS, zu reduzieren, stellt ein wichtiges Ziel der neurowissenschaftlichen Forschung dar. Neben Arbeiten, die tDCS-Effekte auf das motorische Lernen bei Stimulation des motorischen Kortex nachweisen konnten, gibt es auch Hinweise für solche Effekte bei Stimulation des Kleinhirns. Allerdings besteht derzeit noch eine hohe Variabilität und damit einhergehend eine schlechte Vergleichbarkeit der Studien bezüglich ihrer Stimulationsbedingungen. Das Ansprechen unterschiedlicher Altersgruppen bleibt unklar. In der vorliegenden Arbeit wurden die Effekte zerebellärer a-tDCS auf das motorische Lernen bei gesunden älteren Probanden untersucht. Im Cross-over-Design wurde zu unterschiedlichen Zeitpunkten (vor bzw. nach der motorischen Aufgabe) stimuliert und im 24-Stunden-Verlauf die Langzeitwirkung evaluiert. Gruppe A erhielt vor einer motorischen Übungsaufgabe eine zerebelläre Stimulation, entweder als a-tDCS oder Scheinstimulation, Gruppe B nach der Übungsaufgabe. Zur Überprüfung der Effekte auf das Sequenzlernen diente der Finger-Tapping-Task. Der Lernerfolg wurde anhand der Genauigkeit, der Sequenzdauer und des Skill-Index gemessen. Die Ergebnisse deuten darauf hin, dass eine zerebelläre a-tDCS vor einer Übungsaufgabe zu einer Verbesserung der Konsolidierung der Fähigkeit, eine Zahlenfolge möglichst schnell und gleichzeitig genau einzutippen, führt, während die Stimulation nach einer Übungsaufgabe das motorische Lernen nicht zu beeinflussen scheint. Insgesamt stützen die Ergebnisse zum Teil die bisherigen Hinweise, dass eine zerebellär applizierte a-tDCS das motorische Lernen verbessern kann. Aufgrund einiger Limitationen, besonders der geringen Gruppengröße, verbleibt dieses Ergebnis jedoch vorläufig und bedarf einer Bestätigung in größeren Probandengruppen. Es bleibt von hohem Interesse, die optimalen Bedingungen für die Anwendung von tDCS am Kleinhirn zu definieren, um motorische Lernprozesse positiv zu beeinflussen. Dies ist die Voraussetzung dafür, zerebelläre tDCS mittelfristig auch zu therapeutischen Zwecken anwenden zu können. N2 - Neurological diseases as well as the natural aging process are regularly accompanied by a loss of neurons resulting into a loss of neurological function. Reducing these impactswith the help of non-invasive techniques, such as transcranial direct current stiumulation (tDCS), is an important goal of neuroscientific research. In addition to studies successfully providing evidence that tDCS is impacting motor learning when stimulating the motor cortex, indication of similar effects exist when stimulating the cerebellum. Unfortunately studies today only provide poor comparability given the underlying inconsistency in stimulation conditions and consequentially yielded results. The response of different age groups remains unclear. The following study explores the effects of cerebellar anodal transranial direct current simulation (a-tDSC) on healthy elderly subjects. Using a crossover design, patience were stimulated at different times (before or after the motor task) and long-term effects were evaluated over a 24-hour period. Group A received cerebellar stimulation prior to a motor exercise in form of an actual a-tDCS or sham stimulation, Group B received treatment after the exercise. The finger tapping task was used to verify the effects on sequence learning. Learning success was measured by accuracy, sequence duration, and skill index. The results indicate that cerebellar a-tDCS prior to the exercise task leads to enhanced consolidation of the ability to type a sequence of numbers quickly and accurately at the same time, whereas stimulation after the exercise task does not seem to affect motor learning. Overall, the results partially support previous evidence that cerebellar applied a-tDCS can improve motor learning. Due to some limitations, in particular the small sample size, results are preliminary and require confirmation across a larger population. Defining the optimal conditions for the application of tDCS to the cerebellum to positively influence motor learning processes remains of high interest. It is the prerequisite to enable application of cerebellar tDCS for therapeutic purposes in the medium term. KW - Motorisches Lernen KW - Kleinhirn KW - transkranielle Gleichstromstimulation (tDCS) KW - finger-tapping task (FTT) KW - zerebelläre Gleichstromstimulation KW - motor learning KW - tDCS Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-317930 ER - TY - THES A1 - Stöcker, Christian T1 - Der Einfluss von Handlungseffekten auf den Erwerb und die Ausführung von Bewegungssequenzen T1 - The influence of action effects on the acquisition and execution of movement sequences N2 - Die Arbeit befasst sich mit der Frage, welche Rolle die sensorischen Effekte von Handlungen beim Erwerb und der Steuerung von Bewegungen spielen. Dabei wird auf zwei experimentelle Ansätze zurückgegriffen, einerseits die serielle Wahlreaktionsaufgabe (SWR) und andererseits Trainingsstudien zum Erwerb kurzer motorischer Sequenzen. In der SWR ist es die Aufgabe der Versuchspersonen, auf nacheinander dargebotene Reize so schnell wie möglich, meist mit Tastendrücken, zu reagieren. Wenn die Abfolge der Tastendrücke einer bestimmten, statistisch festgelegten oder zyklisch wiederholten Struktur folgt, nehmen die Reaktionszeiten stark ab, wenn die Struktureigenschaften verändert werden, verschwindet dieser Übungsgewinn wieder. Anhand der einschlägigen Literatur wird zunächst belegt, dass sowohl statistische als auch relationale sowie raum-zeitliche Struktureigenschaften die Lernrate beeinflussen. Anschliessend wird diskutiert, zwischen welchen Elementen der Ereignissequenz, die eine SWR darstellt, Struktureigenschaften wirksam werden. Es wird der Nachweis geführt, dass die Bedeutung von Reaktionseffekten in diesem Zusammenhang in der Literatur bisher weitgehend vernachlässigt wurde. Ein ähnlicher Mangel zeigt sich auch in der Betrachgung der Literatur zum Training kurzer Bewegungsfolgen und den theoretischen Ansätzen zur motorischen Programmierung: Sensorische Effekte von Bewegungen werden in den Erklärungsmodellen nicht als bedeutsamer Faktor erkannt. Fußend auf der Logik des „ideomotorischen Prinzips“ wird in einer Serie von Experimenten der Nachweis geführt, dass Toneffekte, die kontingent an die Reaktionstasten gebunden sind, sich erleichternd auf den Erwerb und die Ausführung motorischer Sequenzen auswirken können. Im ersten Experiment wird in einer seriellen Wahlreaktionsaufgabe eine Gruppe von Versuchspersonen, die kontingent zugeordnete Toneffekte erzeugt mit zwei Kontrollgruppen (ohne Toneffekte und mit nicht-kontingenten Toneffekten) verglichen. Die kontigenten Toneffekte verbessern das serielle Lernen substantiell, die nicht-kontingenten Toneffekte haben keinen Einfluss. In Experiment 2 wird dieser Befund mit anderem Reizmaterial repliziert und es wird gezeigt, dass bedeutsame Kompatibilitätsbeziehungen zwischen den Reaktionstasten und den Tönen bestehen: Der nützliche Einfluss der Töne zeigt sich nur bei von links nach rechts aufsteigender Zuordnung. In beiden Experimenten kann eine Erklärung der Ergebnisse durch Unterschiede im „expliziten Wissen“ über die Sequenzstruktur ausgeschlossen werden. Experiment drei bis fünf zeigen, dass kontingent und aufsteigend zugeordnete Toneffekte auch das Erlernen kurzer Tastendruchsequenzen, die über einen längeren Zeitraum trainiert werden können, erleichtern. Am augenfälligsten ist dabei das Verschwinden des sogenannten Sequenzlängeneffektes, eines üblicherweise vorhandenen Unterschiedes in den Initiierungszeiten kürzerer und längerer motorischer Abfolgen. Mit geeigneten Toneffekten lassen sich längere Sequenzen ebenso schnell initiieren wie kürzere, was dafür spricht, dass die sensorischen Effekte bei der Erstellung des motorischen Programmes für die Bewegung eine Rolle spielen. In Experiment 4 und 5 nehmen auch die Zwischen-Tasten-Intervalle innerhalb der trainierten Sequenzen mit Toneffekten schneller ab und gleichen sich einander schneller an, was als Hinweis darauf interpretiert wird, dass die Toneffekte sich erleichternd auf das chunking, also die Zusammenfassung einzelner Elemente zu größeren Einheiten, auswirken. Diese Überlegung steht im Einklang mit aus der Literatur bekannten Überlegungen zur Reduktion des Sequenzlängeneffektes durch intensives Training, auch hier wurde in der Vergangenheit bereits ein Einfluss von chunking-Prozessen vermutet. Experiment 5 zeigt, dass der Einfluss der Toneffekte auch bei einem längeren Vorinformationsintervall nicht verschwindet, das heisst, auch wenn die Versuchspersonen Zeit haben, sich auf die gleich auszuführende Sequenz vorzubereiten, können mit Toneffekten geübte Sequenzen schneller initiiert werden. Dies spricht dagegen, dass die Toneffekte sich nur erleichternd auf die Aktionsauswahl auswirken, und dafür, dass ihnen auch bei Initiierung und Ausführung Bedeutung zukommt. Ein letztes Experiment zeigt, dass die beobachteten Befunde nicht unabhängig von den verwendeten Effekten sind, da sich bei einem Replikationsversuch mit visuellen Effekten (Ziffern) keine Unterschiede zwischen Experimental-und Kontrollbedignung beobachten lassen. Die Ergebnisse werden mit Blick auf die zukünftige Modellbildung im Bereich der Motoriksteuerung und der motorischen Programmierung diskutiert. Nachdem Alternativerklärungen ausgeschlossen werden können wird der Schluss gezogen, dass sensorische Effekte Teil der zu Auswahl und Steuerung von Bewegungen notwendigen internen Repräsentationen sein müssen. Geeignete Effekte können Erwerb und Ausführung beschleunigen. N2 - The thesis deals with the role of sensory effects for the acquisition and control of movement. Two experimental approaches are employed: The serial reaction time task (SRT) and a training paradigm for the acquisition of short movement sequences. In the SRT, participants are to respond as fast as possible to successively presented stimuli, usually with keystrokes. When the sequence of keystrokes follows a fixed structure, repeating or statistically constrained, response times are reduced, when the structural properties are changed, this practice benefit is lost. Some authors consider this result as an example of "implicit learning", since participants are often unable to relate the structure of the stimulus-response sequence afterwards. With reference to the relevant literature it is first shown that statistical as well as relational and temporal-spatial structural properties influence learning. Subsequently it is discussed between which elements of the event sequences an SRT represents structural properties exert their influence. The most promising approaches take links between various elements, i.e. stimuli, responses and response effects into account. It is demonstrated that the importance of response effects has largely been neglected in the literature so far. A similar picture emerges for the literature on practising short movement sequences: Sensory effects are not considered an important factor there. Based on the logic of the "ideomotor principle" a subsequent series of experiments demonstrates that tone effects contingently linked to the response keys can facilitate the acquisition and execution of motor sequences. In Experiment 1, a group of participants producing contingent tones with their keystrokes in an SRT is compared to two control groups, one producing non-contingent and one no tone effects. The contingent tone effects substantially improve serial learning, whereas no improvement is found for the non-contingent tone effects. This result is replicated in Experiment 2 with different stimulus material. It is also shown that there are compatibility relations between the response keys and the tones: The beneficial influence of the tone effects is observed only when they are mapped onto the response keys in ascending order from left to right. "Explicit knowledge" about sequence structure cannot explain the group differences in either experiment. Experiments 3 to 5 show that contingently and ascendingly mapped tone effects also facilitate the acquisition of short movement sequences being practiced for extended periods of time. The most obvious influence here is the disappearance of the sequence length effect. This is a usually found difference between the initiation times of shorter and longer motor sequences. With suitable tone effects, longer sequences can be initiated as fast as short sequences. This suggests that sensory effects play a role during the construction of motor programs for movement control. In Experiment 4 and 5, the interresponse intervals in the sequences practiced with tone effects also decrease faster and a trend for homogenization becomes apparent. This indicates that the tone effects facilitate chunking, i.e. the linking of single movement elements into larger units. This is in line with older notions from the motor learning literature. Chunking has for some time been considered responsible for the reduction of the sequence length effect through practice. Experiment 5 demonstrates that the influence of the tone effects does not disappear even when participants are given ample preparation time before having to start a sequence. Even then, sequences associated with tone effects can be initiated faster. This makes it unlikely that tone effects only facilitate action selection and favours the interpretation that they are important also for initiation and execution. The last Experiment shows that the observed results are not independent of the kind of effects presented. With visual effects (digits) no differential influences were observed. The results are discussed with reference to the future formulation of models on motor control and motor programming. Since alternative explanations of the data can be ruled out, the conclusion is drawn that sensory effects must be part of the internal representations used for selecting and controlling movements. If these effects have certain properties facilitating their association with the movements that produce them on the one hand and facilitating associations between themselves on the other hand, they can obviously accelerate the acquisition and execution of movement sequences. KW - Bewegungshandlung KW - Motorisches Lernen KW - Motorisches Lernen KW - Bewegungssequenzen KW - Handlungseffekte KW - ideomotorisches Prinzip KW - Sequenzlängeneffekt KW - motor learning KW - motor sequences KW - action effects KW - ideomotor principle KW - sequence length effect Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-5303 ER - TY - THES A1 - Lenhard, Alexandra T1 - Sensorische Bewegungskontrolle als Grundlage intermanuellen Transfers T1 - Sensory movement control as basic mechanism of intermanual transfer N2 - Ziel dieser Arbeit war es aufzuzeigen, dass die hohe Adaptivität und Flexibilität menschlicher Bewegungskontrolle unter der Annahme erklärt werden kann, dass Bewegungen als wahrgenommene Ereignisse geplant, ausgeführt und gespeichert werden, ohne dass dabei ein direkter Zugriff auf efferente Muster erfolgt. Dafür trainierten Versuchspersonen in drei Experimenten jeweils mit einer Hand Zielbewegungen. Bei einem der Ziele war die visuelle Rückmeldung dabei so manipuliert, dass die Bewegungen kürzer erschienen als tatsächlich ausgeführt. Versuchspersonen adaptierten an diese visuomotorische Transformation. Darüber hinaus generalisierte die zielspezifische Adaptation auch auf Bewegungen der untrainierten Hand. Die Höhe des Transfers hing sowohl von der Händigkeit als auch vom Geschlecht der Versuchspersonen ab. Rechtshändige Männer zeigten mehr Transfer von der rechten auf die linke Hand als umgekehrt, während bei linkshändigen Männern und bei Frauen keine Asymmetrien zu beobachten waren. Ob die Versuchspersonen die Manipulation gemerkt hatten oder nicht, spielte für die Höhe des Transfers keine Rolle. Die Qualität des Transfer ließ darauf schließen, dass die motorische Adaptation nicht in Form efferenter Signale, sondern in Form sensorischer Repräsentationen gespeichert und abgerufen wurde. Die Ergebnisse wurden mit künstlichen neuronalen Netzen modelliert. Voraussetzung für die qualitative und quantitative Modellierung des Transfers war zum einen die Annahme einer effektorunabhängigen räumlichen Repräsentation, auf die beide Arme zugreifen, und zum anderen die wiederholte systematische Koaktivierung beider Arme vor der visuomotorischen Adaptation. In einem vierten Experiment trainierten Versuchspersonen die Ausübung einer konstanten Druckkraft mit dem Zeigefinger einer Hand. In einer Transferphase musste die Kraft mit dem Zeigefinger oder Mittelfinger der gleichen oder der anderen Hand reproduziert werden. Bei einigen der Versuchspersonen wurde die sensorische Rückmeldung während der Transferphase dadurch verändert, dass ein Fingerhut über den jeweils benutzten Finger gestülpt war. Es zeigte sich, dass die Genauigkeit der Kraftreproduktion nur unwesentlich davon abhing, welcher Finger benutzt wurde. Dagegen hing sie wesentlich davon ab, ob die sensorische Rückmeldung verändert war oder nicht. Auch dieses Experiment weist also darauf hin, dass im motorischen Gedächtnis keine effektorspezifischen efferenten Muster gespeichert werden. Vielmehr scheinen beim Bewegungslernen relevante sensorische Zielgrößen gespeichert zu werden, die später als Referenzwert für Bewegungen des trainierten Armes und anderer Körperglieder genutzt werden können. N2 - The aim of the present study was to demonstrate that the enormous adaptivity and flexibility of human movement control can be explained under the assumption that movements are planned, executed and stored in terms of perceivable events and without direct access on efferent patterns. For this purpose, participants trained aiming movements to different targets with one hand. For one target visual feedback was manipulated so that movements to this target appeared shorter than they actually were. Participants adapted to that visuomotor transformation. Furthermore, the target-specific adaptation also generalized to movements of the untrained hand. The amount of transfer depended both on handedness and sex. Right-handed males showed more transfer from the right to the left hand than vice versa, whereas there was no comparable asymmetry in left-handed males and in females. Whether the participants noticed the manipulation or not was not relevant with regard to the amount of transfer. The quality of transfer led us to conclude that the motor adaptation was not stored and recalled in terms of efferent signals but in terms of sensory representations. We modeled these results with artificial neural networks. Qualitative and quantitative replication of the human results could only be achieved if the networks included an effector-independent spatial representation and if the arms were coactivated repeatedly and systematically before the visuomotor adaptation. In another task that we have used to explore learning transfer participants learned to produce a constant force with the index finger of one hand. During a transfer phase they had to reproduce the force with the index or middle finger of the same or the other hand. For some of the participants we changed the sensory feedback during that phase by putting a thimble on the performing finger. Results revealed that changing the finger did not affect the accuracy of force reproduction significantly. By contrast, changing the sensory feedback considerably impaired the force reproduction. Therefore, the experiment also points to the fact that motor memory is not based on effector-specific efferent patterns. Rather, we believe that motor memory is primarily based on sensory representions of movement goals which subsequently can be used as reference value for movements of the trained arm as well as movements of other limbs. KW - Bewegungssteuerung KW - Transfer KW - Motorisches Lernen KW - Händigkeit KW - Hemisphärendominanz KW - Implizites Lernen KW - Bewusstheit KW - motorische Adaptation KW - Kraftkontrolle KW - Geschlechtsunterschied KW - neuronale Modellierung KW - Ideomotorisches Prinzip KW - motor learning KW - force control KW - intermanual transfer KW - brain asymmetry KW - ideomotor principle Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-23879 ER - TY - THES A1 - Lenhard, Alexandra T1 - Intra- and intermanual transfer of adaptation to unnoticed virtual displacement under terminal and continuous visual feedback N2 - Versuchspersonen trainierten mit der rechten Hand Zielbewegungen zu verschiedenen Zielen unter terminalem oder kontinuierlichem visuellem Feedback. Für eines der Ziele wurde die visuelle Rückmeldung so manipuliert, dass Bewegungen zu diesem Ziel kürzer wirkten, als sie tatsächlich waren. Nach dem Training sollten die gleichen Ziele sowohl mit der trainierten rechten als auch mit der untrainierten linken Hand erreicht werden. Bewegungen der rechten Hand passten sich an die unbemerkte visuelle Transformation an. Die Adaptation war unter kontinuierlichem Feedback schwächer als unter terminalem. Außerdem generalisierte die Adapation nur unter terminalem, aber nicht unter kontinuierlichem Feedback, auf andere Zielbewegungen in die gleiche Richtung, aber nicht auf Zielbewegungen in die entgegengesetzte Richtung. Bewegungen der untrainierten linken Hand zeigten qualitativ die gleichen adaptationsbedingten Veränderungen wie Bewegungen der rechten Hand. Die Ergebnisse sprechen für die Annahme, dass beim Training der rechten Hand eine effektorunabhängige räumliche Repräsentation verändert wird, auf die bei der Steuerung beider Hände zurückgegriffen wird. N2 - Participants trained aiming movements of the right hand to several targets with a prism-like virtual displacement of the location of one of the targets, receiving either terminal or continuous visual feedback. After training, the same targets were to be reached with the untrained left hand under manipulated feedback conditions. The right hand movements continuously adapted to the unnoticed visual displacement, significantly less with continuous than with terminal feedback. Under terminal but not under continuous feedback the adaptation to the manipulated target generalized to targets in the same horizontal direction but not to targets in the opposite direction. Finally, the movements of the untrained left hand showed the same qualitative changes to the targets as the movements of the trained right hand. The data are in line with the notion that the adaptation of the right hand movements is mainly based on a re-interpretation of target locations on which movement control of both hands draws. KW - Motorisches Lernen KW - Bewegungssteuerung KW - Rückmeldung KW - Transfer KW - visuomotorische Transformation KW - intermanueller Transfer KW - Zielbewegungen KW - motor learning KW - intermanual transfer KW - aiming KW - visuomotor transformation KW - feedback Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-23889 ER - TY - THES A1 - Herbort, Oliver T1 - Encoding Redundancy for Task-dependent Optimal Control : A Neural Network Model of Human Reaching T1 - Redundante Repräsentationen als Grundlage aufgabenbezogener optimaler Steuerung:Ein neuronales Netzwerk Modell menschlicher Zeigebewegungen N2 - The human motor system is adaptive in two senses. It adapts to the properties of the body to enable effective control. It also adapts to different situational requirements and constraints. This thesis proposes a new neural network model of both kinds of adaptivity for the motor cortical control of human reaching movements, called SURE_REACH (sensorimotor unsupervised learning redundancy resolving control architecture). In this neural network approach, the kinematic and sensorimotor redundancy of a three-joint planar arm is encoded in task-independent internal models by an unsupervised learning scheme. Before a movement is executed, the neural networks prepare a movement plan from the task-independent internal models, which flexibly incorporates external, task-specific constraints. The movement plan is then implemented by proprioceptive or visual closed-loop control. This structure enables SURE_REACH to reach hand targets while incorporating task-specific contraints, for example adhering to kinematic constraints, anticipating the demands of subsequent movements, avoiding obstacles, or reducing the motion of impaired joints. Besides this functionality, the model accounts for temporal aspects of human reaching movements or for data from priming experiments. Additionally, the neural network structure reflects properties of motor cortical networks like interdependent population encoded body space representations, recurrent connectivity, or associative learning schemes. This thesis introduces and describes the new model, relates it to current computational models, evaluates its functionality, relates it to human behavior and neurophysiology, and finally discusses potential extensions as well as the validity of the model. In conclusion, the proposed model grounds highly flexible task-dependent behavior in a neural network framework and unsupervised sensorimotor learning. N2 - Das motorische System des Menschen ist in zweierlei Hinsicht anpassungsfähig. Es passt sich den Eigenschaften des Körpers an, um diesen effektiv zu kontrollieren. Es passt sich aber auch unterschiedlichen situationsabhängigen Erfordernissen und Beschränkungen an. Diese Dissertation stellt ein neues neuronales Netzwerk Modell der motor-kortikalen Steuerung von menschlichen Zeigebewegungen vor, das beide Arten von Anpassungsfähigkeit integriert (SURE_REACH, Sensumotorische, unüberwacht lernende, redundanzauflösende Kontrollarchitektur). Das neuronale Netzwerk speichert kinematische und sensumotorische Redundanz eines planaren, dreigelenkigen Armes in aufgabenunabhängigen internen Modellen mittels unüberwachter Lernverfahrenen. Vor der Ausführung einer Bewegung bereitet das neuronale Netzwerk einen Bewegungsplan vor. Dieser basiert auf den aufgabenunabhängigen internen Modells und passt sich flexibel äu"seren, aufgabenabhängigen Erfordernissen an. Der Bewegungsplan wird dann durch propriozeptive oder visuelle Regelung umgesetzt. Auf diese Weise erklärt SURE_REACH Bewegungen zu Handzielen die aufgabenabhängige Erfordernisse berücksichtigen, zum Beispiel werden kinematische Beschränkungen miteinbezogen, Erfordernisse nachfolgender Aufgaben antizipiert, Hindernisse vermieden oder Bewegungen verletzter Gelenke reduziert. Desweiteren werden zeitliche Eigenschaften menschlicher Bewegungen oder die Ergebnisse von Primingexperimenten erklärt. Die neuronalen Netzwerke bilden zudem Eigenschaften motor-kortikaler Netzwerke ab, zum Beispiel wechselseitig abhängige Raumrepräsentationen, rekurrente Verbindungen oder assoziative Lernverfahren. Diese Dissertation beschreibt das neue Modell, vergleicht es mit anderen Modellen, untersucht seine Funktionalität, stellt Verbindungen zu menschlichem Verhalten und menschlicher Neurophysiologie her und erörtert schlie"slich mögliche Erweiterungen und die Validität des Models. Zusammenfassend stellt das vorgeschlagene Model eine Erklärung für flexibles aufgabenbezogenes Verhalten auf ein Fundament aus neuronalen Netzwerken und unüberwachten sensumotorischen Lernen. KW - Bewegungssteuerung KW - Motorisches Lernen KW - Redundanz KW - Neuronales Netz KW - Optimale Kontrolle KW - Computersimulation KW - Populationscodes KW - dynamisches Programmieren KW - flexibles Verhalten KW - population codes KW - dynamic programming KW - flexible behavior Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26032 ER - TY - THES A1 - Andreska, Thomas T1 - Effects of dopamine on BDNF / TrkB mediated signaling and plasticity on cortico-striatal synapses T1 - Effekte von Dopamin auf BDNF / TrkB vermittelte Signalwege und Plastizität an cortico-striatalen Synapsen N2 - Progressive loss of voluntary movement control is the central symptom of Parkinson's disease (PD). Even today, we are not yet able to cure PD. This is mainly due to a lack of understanding the mechanisms of movement control, network activity and plasticity in motor circuits, in particular between the cerebral cortex and the striatum. Brain-derived neurotrophic factor (BDNF) has emerged as one of the most important factors for the development and survival of neurons, as well as for synaptic plasticity. It is thus an important target for the development of new therapeutic strategies against neurodegenerative diseases. Together with its receptor, the Tropomyosin receptor kinase B (TrkB), it is critically involved in development and function of the striatum. Nevertheless, little is known about the localization of BDNF within presynaptic terminals in the striatum, as well as the types of neurons that produce BDNF in the cerebral cortex. Furthermore, the influence of midbrain derived dopamine on the control of BDNF / TrkB interaction in striatal medium spiny neurons (MSNs) remains elusive so far. Dopamine, however, appears to play an important role, as its absence leads to drastic changes in striatal synaptic plasticity. This suggests that dopamine could regulate synaptic activity in the striatum via modulation of BDNF / TrkB function. To answer these questions, we have developed a sensitive and reliable protocol for the immunohistochemical detection of endogenous BDNF. We find that the majority of striatal BDNF is provided by glutamatergic, cortex derived afferents and not dopaminergic inputs from the midbrain. In fact, we found BDNF in cell bodies of neurons in layers II-III and V of the primary and secondary motor cortex as well as layer V of the somatosensory cortex. These are the brain areas that send dense projections to the dorsolateral striatum for control of voluntary movement. Furthermore, we could show that these projection neurons significantly downregulate the expression of BDNF during the juvenile development of mice between 3 and 12 weeks. In parallel, we found a modulatory effect of dopamine on the translocation of TrkB to the cell surface in postsynaptic striatal Medium Spiny Neurons (MSNs). In MSNs of the direct pathway (dMSNs), which express dopamine receptor 1 (DRD1), we observed the formation of TrkB aggregates in the 6-hydroxydopamine (6-OHDA) model of PD. This suggests that DRD1 activity controls TrkB surface expression in these neurons. In contrast, we found that DRD2 activation has opposite effects in MSNs of the indirect pathway (iMSNs). Activation of DRD2 promotes a rapid decrease in TrkB surface expression which was reversible and depended on cAMP. In parallel, stimulation of DRD2 led to induction of phospho-TrkB (pTrkB). This effect was significantly slower than the effect on TrkB surface expression and indicates that TrkB is transactivated by DRD2. Together, our data provide evidence that dopamine triggers dual modes of plasticity on striatal MSNs by acting on TrkB surface expression in DRD1 and DRD2 expressing MSNs. This surface expression of the receptor is crucial for the binding of BDNF, which is released from corticostriatal afferents. This leads to the induction of TrkB-mediated downstream signal transduction cascades and long-term potentiation (LTP). Therefore, the dopamine-mediated translocation of TrkB could be a mediator that modulates the balance between dopaminergic and glutamatergic signaling to allow synaptic plasticity in a spatiotemporal manner. This information and the fact that TrkB is segregated to persistent aggregates in PD could help to improve our understanding of voluntary movement control and to develop new therapeutic strategies beyond those focusing on dopaminergic supply. N2 - Der fortschreitende Verlust der willkürlichen Bewegungskontrolle ist ein zentrales Symptom der Parkinson-Krankheit (PD). Auch heute sind wir noch nicht in der Lage, PD zu heilen. Dafür verantwortlich ist hauptsächlich ein mangelndes Verständnis von Mechanismen der Bewegungskontrolle, Netzwerkaktivität und Plastizität in motorischen Schaltkreisen, insbesondere zwischen Hirnrinde und Striatum. Der neurotrophe Faktor BDNF ist einer der wichtigsten Faktoren für die Entwicklung und das Überleben von Neuronen sowie für synaptische Plastizität im zentralen Nervensystem. BDNF ist daher ein Target für die Entwicklung neuer therapeutischer Strategien gegen neurodegenerative Erkrankungen. Zusammen mit seinem Rezeptor, der Tropomyosin-Rezeptorkinase B (TrkB), ist BDNF maßgeblich an der Entwicklung und Funktion des Striatums beteiligt. Dennoch ist nur wenig bekannt, wo BDNF an Synapsen im Striatum lokalisiert ist, und wo BDNF in Neuronen der Hirnrinde synthetisiert wird. Außerdem ist der Einfluss von Dopamin aus dem Mittelhirn auf die Kontrolle der BDNF / TrkB-Interaktion in striatalen Medium-Spiny-Neuronen (MSNs) bisher unklar. Dopamin scheint jedoch eine wichtige Rolle zu spielen, da dessen Abwesenheit zu drastischen Veränderungen der striatalen Plastizität führt. Dopamin könnte synaptische Plastizität im Striatum über eine Modulation der BDNF / TrkB-Interaktion regulieren. Um diese Fragen beantworten zu können, haben wir ein sensitives und zuverlässiges Protokoll für den immunhistochemischen Nachweis von endogenem BDNF entwickelt. Wir fanden heraus, dass BDNF im Striatum vor allem in glutamatergen Synapsen von Projektion aus dem Kortex lokalisiert ist und nicht in Terminalen dopaminerger Neurone aus dem Mittelhirn. Tatsächlich fanden wir BDNF in den Zellkörpern von Neuronen in den Schichten II-III und V des primären und sekundären motorischen Kortex sowie Schicht V des somatosensorischen Kortex. Es sind jene Hirnareale, welche dichte Projektionen zum dorsolateralen Striatum senden und entscheidend an der Steuerung von willkürlichen Bewegungen beteiligt sind. Weiterhin konnten wir zeigen, dass eben jene Projektionsneurone die Bildung von BDNF während der juvenilen Entwicklung von Mäusen zwischen 3 und 12 Wochen signifikant herunter regulieren. In striatalen MSN fanden wir zudem einen modulatorischen Effekt von Dopamin auf die Translokation von TrkB zur Zelloberfläche. In MSNs des direkten Signalweges (dMSNs), welche Dopaminrezeptor 1 (DRD1) exprimieren, konnten wir die Bildung von TrkB-Aggregaten im 6-Hydroxydopamin (6-OHDA) - Rattenmodell der Parkinson Erkankung beobachten. Dies deutet darauf hin, dass die DRD1-Aktivität die TrkB-Oberflächenexpression in diesen Neuronen steuert. Im Gegensatz dazu fanden wir heraus, dass die DRD2-Aktivierung in MSNs des indirekten Signalweges (iMSNs) eine gegensätzliche Wirkung hat. Die Aktivierung von DRD2 führt zu einer schnellen Reduktion der TrkB-Oberflächenexpression, die reversibel und von cAMP abhängig ist. Außerdem führte die Stimulation von DRD2 zu einer Induktion von Phospho-TrkB (pTrkB). Dieser Effekt war deutlich langsamer als die Wirkung auf die TrkB-Oberflächenexpression und deutet auf eine Transaktivierung von TrkB über DRD2 hin. Insgesamt scheint Dopamin entgegengesetzte Plastizitätsmodi in striatalen MSNs auszulösen, indem es auf die TrkB-Oberflächenexpression in DRD1- und DRD2-exprimierenden MSNs einwirkt. Diese Oberflächenexpression des Rezeptors ist entscheidend für die Bindung von BDNF, welches aus kortiko-striatalen Afferenzen freigesetzt wird. Dies führt zur Induktion von TrkB-vermittelten-Signaltransduktionskaskaden und Langzeitpotenzierung (LTP). Daher könnte die dopamin-vermittelte Translokalisation von TrkB das Gleichgewicht zwischen dopaminergen und glutamatergen Signalen modulieren, um die synaptische Plastizität in einer räumlich-zeitlich abgestimmten Weise zu ermöglichen. Diese Information und die Tatsache, dass TrkB bei PD stabile Aggregate bildet, könnte dazu beitragen, unser Verständnis der willkürlichen Bewegungskontrolle zu verbessern und neue therapeutische Strategien zu entwickeln, die über jene hinausgehen, welche sich auf die dopaminerge Versorgung konzentrieren. KW - Brain-derived neurotrophic factor KW - Parkinson Krankheit KW - Plastizität KW - Motorisches Lernen KW - Basalganglien KW - Brain-derived neurotrophic factor KW - TrkB KW - Basal Ganglia KW - Motor learning KW - Parkinson's disease KW - Synaptic plasticity KW - Striatum KW - Medium spiny neurons KW - Cortico-striatal projection neurons Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174317 ER -