TY - JOUR A1 - Jeanclos, Elisabeth A1 - Knobloch, Gunnar A1 - Hoffmann, Axel A1 - Fedorchenko, Oleg A1 - Odersky, Andrea A1 - Lamprecht, Anna‐Karina A1 - Schindelin, Hermann A1 - Gohla, Antje T1 - Ca\(^{2+}\) functions as a molecular switch that controls the mutually exclusive complex formation of pyridoxal phosphatase with CIB1 or calmodulin JF - FEBS Letters N2 - Pyridoxal 5′‐phosphate (PLP) is an essential cofactor for neurotransmitter metabolism. Pyridoxal phosphatase (PDXP) deficiency in mice increases PLP and γ‐aminobutyric acid levels in the brain, yet how PDXP is regulated is unclear. Here, we identify the Ca\(^{2+}\)‐ and integrin‐binding protein 1 (CIB1) as a PDXP interactor by yeast two‐hybrid screening and find a calmodulin (CaM)‐binding motif that overlaps with the PDXP‐CIB1 interaction site. Pulldown and crosslinking assays with purified proteins demonstrate that PDXP directly binds to CIB1 or CaM. CIB1 or CaM does not alter PDXP phosphatase activity. However, elevated Ca\(^{2+}\) concentrations promote CaM binding and, thereby, diminish CIB1 binding to PDXP, as both interactors bind in a mutually exclusive way. Hence, the PDXP‐CIB1 complex may functionally differ from the PDXP‐Ca\(^{2+}\)‐CaM complex. KW - calmodulin KW - chronophin KW - CIB1 KW - haloacid dehalogenase KW - pyridoxal phosphatase KW - vitamin B6 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217963 VL - 594 IS - 13 SP - 2099 EP - 2115 ER - TY - JOUR A1 - Diebold, Mathias A1 - Schönemann, Lars A1 - Eilers, Martin A1 - Sotriffer, Christoph A1 - Schindelin, Hermann T1 - Crystal structure of a covalently linked Aurora-A-MYCN complex JF - Acta Crystallographica N2 - Formation of the Aurora-A–MYCN complex increases levels of the oncogenic transcription factor MYCN in neuroblastoma cells by abrogating its degradation through the ubiquitin proteasome system. While some small-molecule inhibitors of Aurora-A were shown to destabilize MYCN, clinical trials have not been satisfactory to date. MYCN itself is considered to be `undruggable' due to its large intrinsically disordered regions. Targeting the Aurora-A–MYCN complex rather than Aurora-A or MYCN alone will open new possibilities for drug development and screening campaigns. To overcome the challenges that a ternary system composed of Aurora-A, MYCN and a small molecule entails, a covalently cross-linked construct of the Aurora-A–MYCN complex was designed, expressed and characterized, thus enabling screening and design campaigns to identify selective binders. KW - MYCNv KW - neuroblastoma cell KW - proteasome system Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318855 VL - D79 SP - 1 EP - 9 ER - TY - JOUR A1 - Imam, Nasir A1 - Choudhury, Susobhan A1 - Heinze, Katrin G. A1 - Schindelin, Hermann T1 - Differential modulation of collybistin conformational dynamics by the closely related GTPases Cdc42 and TC10 JF - Frontiers in Synaptic Neuroscience N2 - Interneuronal synaptic transmission relies on the proper spatial organization of presynaptic neurotransmitter release and its reception on the postsynaptic side by cognate neurotransmitter receptors. Neurotransmitter receptors are incorporated into and arranged within the plasma membrane with the assistance of scaffolding and adaptor proteins. At inhibitory GABAergic postsynapses, collybistin, a neuronal adaptor protein, recruits the scaffolding protein gephyrin and interacts with various neuronal factors including cell adhesion proteins of the neuroligin family, the GABAA receptor α2-subunit and the closely related small GTPases Cdc42 and TC10 (RhoQ). Most collybistin splice variants harbor an N-terminal SH3 domain and exist in an autoinhibited/closed state. Cdc42 and TC10, despite sharing 67.4% amino acid sequence identity, interact differently with collybistin. Here, we delineate the molecular basis of the collybistin conformational activation induced by TC10 with the aid of recently developed collybistin FRET sensors. Time-resolved fluorescence-based FRET measurements reveal that TC10 binds to closed/inactive collybistin leading to relief of its autoinhibition, contrary to Cdc42, which only interacts with collybistin when forced into an open state by the introduction of mutations destabilizing the closed state of collybistin. Taken together, our data describe a TC10-driven signaling mechanism in which collybistin switches from its autoinhibited closed state to an open/active state. KW - autoinhibition KW - fluorescence resonance energy transfer (FRET) KW - gephyrin KW - guanine nucleotide exchange factor (GEF) KW - inhibitory postsynapse KW - Rho GTPase Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-282816 SN - 1663-3563 VL - 14 ER - TY - JOUR A1 - Atak, Sinem A1 - Langlhofer, Georg A1 - Schaefer, Natascha A1 - Kessler, Denise A1 - Meiselbach, Heike A1 - Delto, Carolyn A1 - Schindelin, Hermann A1 - Villmann, Carmen T1 - Disturbances of ligand potency and enhanced degradation of the human glycine receptor at affected positions G160 and T162 originally identified in patients suffering from hyperekplexia JF - Frontiers in Molecular Neuroscience N2 - Ligand-binding of Cys-loop receptors is determined by N-terminal extracellular loop structures from the plus as well as from the minus side of two adjacent subunits in the pentameric receptor complex. An aromatic residue in loop B of the glycine receptor (GIyR) undergoes direct interaction with the incoming ligand via a cation-π interaction. Recently, we showed that mutated residues in loop B identified from human patients suffering from hyperekplexia disturb ligand-binding. Here, we exchanged the affected human residues by amino acids found in related members of the Cys-loop receptor family to determine the effects of side chain volume for ion channel properties. GIyR variants were characterized in vitro following transfection into cell lines in order to analyze protein expression, trafficking, degradation and ion channel function. GIyR α1 G160 mutations significantly decrease glycine potency arguing for a positional effect on neighboring aromatic residues and consequently glycine-binding within the ligand-binding pocket. Disturbed glycinergic inhibition due to T162 α1 mutations is an additive effect of affected biogenesis and structural changes within the ligand-binding site. Protein trafficking from the ER toward the ER-Golgi intermediate compartment, the secretory Golgi pathways and finally the cell surface is largely diminished, but still sufficient to deliver ion channels that are functional at least at high glycine concentrations. The majority of T162 mutant protein accumulates in the ER and is delivered to ER-associated proteasomal degradation. Hence, G160 is an important determinant during glycine binding. In contrast, 1162 affects primarily receptor biogenesis whereas exchanges in functionality are secondary effects thereof. KW - mutations KW - trafficking KW - domain KW - hyperekplexia KW - loop B KW - side chain properties KW - ligand potencies KW - Cys-loop receptor KW - glycine receptor KW - site KW - activation KW - binding KW - channel KW - mechanisms KW - dominant KW - startle Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144818 VL - 8 IS - 79 ER - TY - JOUR A1 - Bothe, Sebastian A1 - Hänzelmann, Petra A1 - Böhler, Stephan A1 - Kehrein, Josef A1 - Zehe, Markus A1 - Wiedemann, Christoph A1 - Hellmich, Ute A. A1 - Brenk, Ruth A1 - Schindelin, Hermann A1 - Sotriffer, Christoph T1 - Fragment screening using biolayer interferometry reveals ligands targeting the SHP-motif binding site of the AAA+ ATPase p97 JF - Communications Chemistry N2 - Biosensor techniques have become increasingly important for fragment-based drug discovery during the last years. The AAA+ ATPase p97 is an essential protein with key roles in protein homeostasis and a possible target for cancer chemotherapy. Currently available p97 inhibitors address its ATPase activity and globally impair p97-mediated processes. In contrast, inhibition of cofactor binding to the N-domain by a protein-protein-interaction inhibitor would enable the selective targeting of specific p97 functions. Here, we describe a biolayer interferometry-based fragment screen targeting the N-domain of p97 and demonstrate that a region known as SHP-motif binding site can be targeted with small molecules. Guided by molecular dynamics simulations, the binding sites of selected screening hits were postulated and experimentally validated using protein- and ligand-based NMR techniques, as well as X-ray crystallography, ultimately resulting in the first structure of a small molecule in complex with the N-domain of p97. The identified fragments provide insights into how this region could be targeted and present first chemical starting points for the development of a protein-protein interaction inhibitor preventing the binding of selected cofactors to p97. KW - fragment screening KW - AAA+ ATPase p97 KW - biosensor Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300821 VL - 5 IS - 1 ER - TY - JOUR A1 - Tretter, Verena A1 - Mukherjee, Jayanta A1 - Maric, Hans-Michael A1 - Schindelin, Hermann A1 - Sieghart, Werner A1 - Moss, Stephen J. T1 - Gephyrin, the enigmatic organizer at GABAergic synapses JF - Frontiers in Cellular Neuroscience N2 - GABA(A) receptors are clustered at synaptic sites to achieve a high density of postsynaptic receptors opposite the input axonal terminals. This allows for an efficient propagation of GABA mediated signals, which mostly result in neuronal inhibition. A key organizer for inhibitory synaptic receptors is the 93 kDa protein gephyrin that forms oligomeric superstructures beneath the synaptic area. Gephyrin has long been known to be directly associated with glycine receptor beta subunits that mediate synaptic inhibition in the spinal cord. Recently, synaptic GABA(A) receptors have also been shown to directly interact with gephyrin and interaction sites have been identified and mapped within the intracellular loops of the GABA(A) receptor alpha 1, alpha 2, and alpha 3 subunits. Gephyrin-binding to GABA(A) receptors seems to be at least one order of magnitude weaker than to glycine receptors (GlyRs) and most probably is regulated by phosphorylation. Gephyrin not only has a structural function at synaptic sites, but also plays a crucial role in synaptic dynamics and is a platform for multiple protein-protein interactions, bringing receptors, cytoskeletal proteins and downstream signaling proteins into close spatial proximity. KW - scaffolding protein gephyryrin KW - containing GABA(A) receptors KW - GABA(A) receptors KW - inhibitory synapse KW - gamma-aminobutyric-acid KW - receptor-beta subunits KW - molybdenum cofactor biosynthesis KW - temporal-lobe epilepsy KW - cultured hippocampal-neurons KW - exchange factor collybistin KW - rat spinal-cord KW - glycine KW - gephyrin KW - receptor clustering KW - synapse formation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133356 VL - 6 IS - 23 ER - TY - JOUR A1 - Jeanclos, Elisabeth A1 - Schlötzer, Jan A1 - Hadamek, Kerstin A1 - Yuan-Chen, Natalia A1 - Alwahsh, Mohammad A1 - Hollmann, Robert A1 - Fratz, Stefanie A1 - Yesilyurt-Gerhards, Dilan A1 - Frankenbach, Tina A1 - Engelmann, Daria A1 - Keller, Angelika A1 - Kaestner, Alexandra A1 - Schmitz, Werner A1 - Neuenschwander, Martin A1 - Hergenröder, Roland A1 - Sotriffer, Christoph A1 - von Kries, Jens Peter A1 - Schindelin, Hermann A1 - Gohla, Antje T1 - Glycolytic flux control by drugging phosphoglycolate phosphatase JF - Nature Communications N2 - Targeting the intrinsic metabolism of immune or tumor cells is a therapeutic strategy in autoimmunity, chronic inflammation or cancer. Metabolite repair enzymes may represent an alternative target class for selective metabolic inhibition, but pharmacological tools to test this concept are needed. Here, we demonstrate that phosphoglycolate phosphatase (PGP), a prototypical metabolite repair enzyme in glycolysis, is a pharmacologically actionable target. Using a combination of small molecule screening, protein crystallography, molecular dynamics simulations and NMR metabolomics, we discover and analyze a compound (CP1) that inhibits PGP with high selectivity and submicromolar potency. CP1 locks the phosphatase in a catalytically inactive conformation, dampens glycolytic flux, and phenocopies effects of cellular PGP-deficiency. This study provides key insights into effective and precise PGP targeting, at the same time validating an allosteric approach to control glycolysis that could advance discoveries of innovative therapeutic candidates. KW - phosphoglycolate phosphatase KW - glycolytic flux control KW - intrinsic metabolism Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300928 VL - 13 IS - 1 ER - TY - JOUR A1 - Mostosi, Philipp A1 - Schindelin, Hermann A1 - Kollmannsberger, Philip A1 - Thorn, Andrea T1 - Haruspex: A Neural Network for the Automatic Identification of Oligonucleotides and Protein Secondary Structure in Cryo‐Electron Microscopy Maps JF - Angewandte Chemie International Edition N2 - In recent years, three‐dimensional density maps reconstructed from single particle images obtained by electron cryo‐microscopy (cryo‐EM) have reached unprecedented resolution. However, map interpretation can be challenging, in particular if the constituting structures require de‐novo model building or are very mobile. Herein, we demonstrate the potential of convolutional neural networks for the annotation of cryo‐EM maps: our network Haruspex has been trained on a carefully curated set of 293 experimentally derived reconstruction maps to automatically annotate RNA/DNA as well as protein secondary structure elements. It can be straightforwardly applied to newly reconstructed maps in order to support domain placement or as a starting point for main‐chain placement. Due to its high recall and precision rates of 95.1 % and 80.3 %, respectively, on an independent test set of 122 maps, it can also be used for validation during model building. The trained network will be available as part of the CCP‐EM suite. KW - DNA structures KW - electron microscopy KW - neural networks KW - protein structures KW - RNA structures Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214763 VL - 59 IS - 35 SP - 14788 EP - 14795 ER - TY - JOUR A1 - Dietschreit, Johannes C. B. A1 - Wagner, Annika A1 - Le, T. Anh A1 - Klein, Philipp A1 - Schindelin, Hermann A1 - Opatz, Till A1 - Engels, Bernd A1 - Hellmich, Ute A. A1 - Ochsenfeld, Christian T1 - Predicting \(^{19}\)F NMR Chemical Shifts: A Combined Computational and Experimental Study of a Trypanosomal Oxidoreductase–Inhibitor Complex JF - Angewandte Chemie International Edition N2 - The absence of fluorine from most biomolecules renders it an excellent probe for NMR spectroscopy to monitor inhibitor–protein interactions. However, predicting the binding mode of a fluorinated ligand from a chemical shift (or vice versa) has been challenging due to the high electron density of the fluorine atom. Nonetheless, reliable \(^{19}\)F chemical‐shift predictions to deduce ligand‐binding modes hold great potential for in silico drug design. Herein, we present a systematic QM/MM study to predict the \(^{19}\)F NMR chemical shifts of a covalently bound fluorinated inhibitor to the essential oxidoreductase tryparedoxin (Tpx) from African trypanosomes, the causative agent of African sleeping sickness. We include many protein–inhibitor conformations as well as monomeric and dimeric inhibitor–protein complexes, thus rendering it the largest computational study on chemical shifts of \(^{19}\)F nuclei in a biological context to date. Our predicted shifts agree well with those obtained experimentally and pave the way for future work in this area. KW - African sleeping sickness KW - covalent inhibitors KW - NMR spectroscopy KW - quantum chemistry KW - structural biology Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214879 VL - 59 IS - 31 SP - 12669 EP - 12673 ER - TY - JOUR A1 - Zhao, Bo A1 - Zhang, Keya A1 - Bhuripanyo, Karan A1 - Choi, Chan Hee J. A1 - Villhauer, Eric B. A1 - Li, Heng A1 - Zheng, Ning A1 - Kiyokawa, Hiroaki A1 - Schindelin, Hermann A1 - Yin, Jun T1 - Profiling the Cross Reactivity of Ubiquitin with the Nedd8 Activating Enzyme by Phage Display JF - PLoS ONE N2 - The C-terminal peptides of ubiquitin (UB) and UB-like proteins (UBLs) play a key role in their recognition by the specific activating enzymes (E1s) to launch their transfer through the respective enzymatic cascades thus modifying cellular proteins. UB and Nedd8, a UBL regulating the activity of cullin-RING UB ligases, only differ by one residue at their C-termini; yet each has its specific E1 for the activation reaction. It has been reported recently that UAE can cross react with Nedd8 to enable its passage through the UB transfer cascade for protein neddylation. To elucidate differences in UB recognition by UAE and NAE, we carried out phage selection of a UB library with randomized C-terminal sequences based on the catalytic formation of UB similar to NAE thioester conjugates. Our results confirmed the previous finding that residue 72 of UB plays a "gate-keeping" role in E1 selectivity. We also found that diverse sequences flanking residue 72 at the UB C-terminus can be accommodated by NAE for activation. Furthermore heptameric peptides derived from the C-terminal sequences of UB variants selected for NAE activation can function as mimics of Nedd8 to form thioester conjugates with NAE and the downstream E2 enzyme Ubc12 in the Nedd8 transfer cascade. Once the peptides are charged onto the cascade enzymes, the full-length Nedd8 protein is effectively blocked from passing through the cascade for the critical modification of cullin. We have thus identified a new class of inhibitors of protein neddylation based on the profiles of the UB C-terminal sequences recognized by NAE. KW - protein NEDD8 KW - E1 KW - system KW - conjugation KW - pathway KW - complex KW - ligases KW - purification KW - neddylation KW - expression Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128479 SN - 1932-6203 VL - 8 IS - e70312 ER -