TY - JOUR A1 - Horn, Melanie A1 - Mitesser, Oliver A1 - Hovestadt, Thomas A1 - Yoshii, Taishi A1 - Rieger, Dirk A1 - Helfrich-Förster, Charlotte T1 - The circadian clock improves fitness in the fruit fly, Drosophila melanogaster JF - Frontiers in Physiology N2 - It is assumed that a properly timed circadian clock enhances fitness, but only few studies have truly demonstrated this in animals. We raised each of the three classical Drosophila period mutants for >50 generations in the laboratory in competition with wildtype flies. The populations were either kept under a conventional 24-h day or under cycles that matched the mutant’s natural cycle, i.e., a 19-h day in the case of pers mutants and a 29-h day for perl mutants. The arrhythmic per0 mutants were grown together with wildtype flies under constant light that renders wildtype flies similar arrhythmic as the mutants. In addition, the mutants had to compete with wildtype flies for two summers in two consecutive years under outdoor conditions. We found that wildtype flies quickly outcompeted the mutant flies under the 24-h laboratory day and under outdoor conditions, but perl mutants persisted and even outnumbered the wildtype flies under the 29-h day in the laboratory. In contrast, pers and per0 mutants did not win against wildtype flies under the 19-h day and constant light, respectively. Our results demonstrate that wildtype flies have a clear fitness advantage in terms of fertility and offspring survival over the period mutants and – as revealed for perl mutants – this advantage appears maximal when the endogenous period resonates with the period of the environment. However, the experiments indicate that perl and pers persist at low frequencies in the population even under the 24-h day. This may be a consequence of a certain mating preference of wildtype and heterozygous females for mutant males and time differences in activity patterns between wildtype and mutants. KW - competition KW - mutants KW - resonance theory KW - mating preference KW - fertility Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-195738 SN - 1664-042X VL - 10 IS - 1374 ER - TY - JOUR A1 - Schäbler, Stefan A1 - Amatobi, Kelechi M. A1 - Horn, Melanie A1 - Rieger, Dirk A1 - Helfrich‑Förster, Charlotte A1 - Mueller, Martin J. A1 - Wegener, Christian A1 - Fekete, Agnes T1 - Loss of function in the Drosophila clock gene period results in altered intermediary lipid metabolism and increased susceptibility to starvation JF - Cellular and Molecular Life Sciences N2 - The fruit fly Drosophila is a prime model in circadian research, but still little is known about its circadian regulation of metabolism. Daily rhythmicity in levels of several metabolites has been found, but knowledge about hydrophobic metabolites is limited. We here compared metabolite levels including lipids between period\(^{01}\) (per\(^{01}\)) clock mutants and Canton-S wildtype (WT\(_{CS}\)) flies in an isogenic and non-isogenic background using LC–MS. In the non-isogenic background, metabo-lites with differing levels comprised essential amino acids, kynurenines, pterinates, glycero(phospho)lipids, and fatty acid esters. Notably, detectable diacylglycerols (DAG) and acylcarnitines (AC), involved in lipid metabolism, showed lower levels in per\(^{01}\) mutants. Most of these differences disappeared in the isogenic background, yet the level differences for AC as well as DAG were consistent for fly bodies. AC levels were dependent on the time of day in WTCS in phase with food consumption under LD conditions, while DAGs showed weak daily oscillations. Two short-chain ACs continued to cycle even in constant darkness. per\(^{01}\) mutants in LD showed no or very weak diel AC oscillations out of phase with feeding activity. The low levels of DAGs and ACs in per\(^{01}\) did not correlate with lower total food consumption, body mass or weight. Clock mutant flies showed higher sensitivity to starvation independent of their background-dependent activity level. Our results suggest that neither feeding, energy storage nor mobilisation is significantly affected in per\(^{01}\) mutants, but point towards impaired mitochondrial activity, supported by upregulation of the mitochondrial stress marker 4EBP in the clock mutants KW - circadian rhythms KW - metabolomics KW - mitochondrial activity KW - tryptophan KW - acylcarnitine KW - feeding Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232432 SN - 1420-682X VL - 77 ER -