TY - JOUR A1 - Gebert, Friederike A1 - Steffan‐Dewenter, Ingolf A1 - Kronbach, Patrick A1 - Peters, Marcell K. T1 - The role of diversity, body size and climate in dung removal: A correlative and experimental approach JF - Journal of Animal Ecology N2 - The mechanisms by which climatic changes influence ecosystem functions, that is, by a direct climatic control of ecosystem processes or by modifying richness and trait compositions of species communities, remain unresolved. This study is a contribution to this discourse by elucidating the linkages between climate, land use, biodiversity, body size and ecosystem functions. We disentangled direct climatic from biodiversity‐mediated effects by using dung removal by dung beetles as a model system and by combining correlative field data and exclosure experiments along an extensive elevational gradient on Mt. Kilimanjaro, Tanzania. Dung removal declined with increasing elevation, being associated with a strong reduction in the richness and body size traits of dung beetle communities. Climate influenced dung removal rates by modifying biodiversity rather than by direct effects. The biodiversity–ecosystem effect was driven by a change in the mean body size of dung beetles. Dung removal rates were strongly reduced when large dung beetles were experimentally excluded. This study underscores that climate influences ecosystem functions mainly by modifying biodiversity and underpins the important role of body size for dung removal. KW - altitudinal gradients KW - biodiversity–ecosystem functioning relationship KW - body size KW - diversity gradients KW - ecosystem services KW - land use KW - Scarabaeidae KW - temperature Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293907 VL - 91 IS - 11 SP - 2181 EP - 2191 ER - TY - JOUR A1 - Thormann, Birthe A1 - Raupach, Michael J. A1 - Wagner, Thomas A1 - Wägele, Johann W. A1 - Peters, Marcell K. T1 - Testing a Short Nuclear Marker for Inferring Staphylinid Beetle Diversity in an African Tropical Rain Forest JF - PLoS ONE N2 - Background: The use of DNA based methods for assessing biodiversity has become increasingly common during the last years. Especially in speciose biomes as tropical rain forests and/or in hyperdiverse or understudied taxa they may efficiently complement morphological approaches. The most successful molecular approach in this field is DNA barcoding based on cytochrome c oxidase I (COI) marker, but other markers are used as well. Whereas most studies aim at identifying or describing species, there are only few attempts to use DNA markers for inventorying all animal species found in environmental samples to describe variations of biodiversity patterns. Methodology/Principal Findings: In this study, an analysis of the nuclear D3 region of the 28S rRNA gene to delimit species-like units is compared to results based on distinction of morphospecies. Data derived from both approaches are used to assess diversity and composition of staphylinid beetle communities of a Guineo-Congolian rain forest in Kenya. Beetles were collected with a standardized sampling design across six transects in primary and secondary forests using pitfall traps. Sequences could be obtained of 99% of all individuals. In total, 76 molecular operational taxonomic units (MOTUs) were found in contrast to 70 discernible morphospecies. Despite this difference both approaches revealed highly similar biodiversity patterns, with species richness being equal in primary and secondary forests, but with divergent species communities in different habitats. The D3-MOTU approach proved to be an efficient tool for biodiversity analyses. Conclusions/Significance: Our data illustrate that the use of MOTUs as a proxy for species can provide an alternative to morphospecies identification for the analysis of changes in community structure of hyperdiverse insect taxa. The efficient amplification of the D3-marker and the ability of the D3-MOTUs to reveal similar biodiversity patterns as analyses of morphospecies recommend its use in future molecular studies on biodiversity. KW - DNA barcodes KW - Biological identifications KW - Species richness KW - Taxonomy KW - Conservation KW - Coleoptera KW - Parataxonomy KW - Assemblages KW - Madagascar Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142666 VL - 6 IS - 3 ER - TY - JOUR A1 - Brenzinger, Kristof A1 - Maihoff, Fabienne A1 - Peters, Marcell K. A1 - Schimmer, Leonie A1 - Bischler, Thorsten A1 - Classen, Alice T1 - Temperature and livestock grazing trigger transcriptome responses in bumblebees along an elevational gradient JF - iScience N2 - Climate and land-use changes cause increasing stress to pollinators but the molecular pathways underlying stress responses are poorly understood. Here, we analyzed the transcriptomic response of Bombus lucorum workers to temperature and livestock grazing. Bumblebees sampled along an elevational gradient, and from differently managed grassland sites (livestock grazing vs unmanaged) in the German Alps did not differ in the expression of genes known for thermal stress responses. Instead, metabolic energy production pathways were upregulated in bumblebees sampled in mid- or high elevations or during cool temperatures. Extensive grazing pressure led to an upregulation of genetic pathways involved in immunoregulation and DNA-repair. We conclude that widespread bumblebees are tolerant toward temperature fluctuations in temperate mountain environments. Moderate temperature increases may even release bumblebees from metabolic stress. However, transcriptome responses to even moderate management regimes highlight the completely underestimated complexity of human influence on natural pollinators. KW - bumblebees KW - stress KW - transcriptomic response KW - climate changes Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301276 VL - 25 IS - 10 ER - TY - JOUR A1 - Classen, Alice A1 - Eardley, Connal D. A1 - Hemp, Andreas A1 - Peters, Marcell K. A1 - Peters, Ralph S. A1 - Ssymank, Axel A1 - Steffan-Dewenter, Ingolf T1 - Specialization of plant-pollinator interactions increases with temperature at Mt. Kilimanjaro JF - Ecology and Evolution N2 - Aim: Species differ in their degree of specialization when interacting with other species, with significant consequences for the function and robustness of ecosystems. In order to better estimate such consequences, we need to improve our understanding of the spatial patterns and drivers of specialization in interaction networks. Methods: Here, we used the extensive environmental gradient of Mt. Kilimanjaro (Tanzania, East Africa) to study patterns and drivers of specialization, and robustness of plant–pollinator interactions against simulated species extinction with standardized sampling methods. We studied specialization, network robustness and other network indices of 67 quantitative plant–pollinator networks consisting of 268 observational hours and 4,380 plant–pollinator interactions along a 3.4 km elevational gradient. Using path analysis, we tested whether resource availability, pollinator richness, visitation rates, temperature, and/or area explain average specialization in pollinator communities. We further linked pollinator specialization to different pollinator taxa, and species traits, that is, proboscis length, body size, and species elevational ranges. Results: We found that specialization decreased with increasing elevation at different levels of biological organization. Among all variables, mean annual temperature was the best predictor of average specialization in pollinator communities. Specialization differed between pollinator taxa, but was not related to pollinator traits. Network robustness against simulated species extinctions of both plants and pollinators was lowest in the most specialized interaction networks, that is, in the lowlands. Conclusions: Our study uncovers patterns in plant–pollinator specialization along elevational gradients. Mean annual temperature was closely linked to pollinator specialization. Energetic constraints, caused by short activity timeframes in cold highlands, may force ectothermic species to broaden their dietary spectrum. Alternatively or in addition, accelerated evolutionary rates might facilitate the establishment of specialization under warm climates. Despite the mechanisms behind the patterns have yet to be fully resolved, our data suggest that temperature shifts in the course of climate change may destabilize pollination networks by affecting network architecture. KW - altitudinal gradient KW - climate change KW - ecological network KW - functional traits KW - generalization KW - mutualistic interactions KW - network specialization index (H2′) KW - pollination KW - robustness KW - specialization Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235959 VL - 10 IS - 4 ER - TY - JOUR A1 - Peters, Marcell K. A1 - Hemp, Andreas A1 - Appelhans, Tim A1 - Behler, Christina A1 - Classen, Alice A1 - Detsch, Florian A1 - Ensslin, Andreas A1 - Ferger, Stefan W. A1 - Frederiksen, Sara B. A1 - Gebert, Frederike A1 - Haas, Michael A1 - Helbig-Bonitz, Maria A1 - Hemp, Claudia A1 - Kindeketa, William J. A1 - Mwangomo, Ephraim A1 - Ngereza, Christine A1 - Otte, Insa A1 - Röder, Juliane A1 - Rutten, Gemma A1 - Costa, David Schellenberger A1 - Tardanico, Joseph A1 - Zancolli, Giulia A1 - Deckert, Jürgen A1 - Eardley, Connal D. A1 - Peters, Ralph S. A1 - Rödel, Mark-Oliver A1 - Schleuning, Matthias A1 - Ssymank, Axel A1 - Kakengi, Victor A1 - Zhang, Jie A1 - Böhning-Gaese, Katrin A1 - Brandl, Roland A1 - Kalko, Elisabeth K.V. A1 - Kleyer, Michael A1 - Nauss, Thomas A1 - Tschapka, Marco A1 - Fischer, Markus A1 - Steffan-Dewenter, Ingolf T1 - Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level JF - Nature Communications N2 - The factors determining gradients of biodiversity are a fundamental yet unresolved topic in ecology. While diversity gradients have been analysed for numerous single taxa, progress towards general explanatory models has been hampered by limitations in the phylogenetic coverage of past studies. By parallel sampling of 25 major plant and animal taxa along a 3.7 km elevational gradient on Mt. Kilimanjaro, we quantify cross-taxon consensus in diversity gradients and evaluate predictors of diversity from single taxa to a multi-taxa community level. While single taxa show complex distribution patterns and respond to different environmental factors, scaling up diversity to the community level leads to an unambiguous support for temperature as the main predictor of species richness in both plants and animals. Our findings illuminate the influence of taxonomic coverage for models of diversity gradients and point to the importance of temperature for diversification and species coexistence in plant and animal communities. KW - community ecology KW - macroecology KW - tropical ecology KW - biodiversity Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169374 VL - 7 ER - TY - JOUR A1 - Ziegler, Alice A1 - Meyer, Hanna A1 - Otte, Insa A1 - Peters, Marcell K. A1 - Appelhans, Tim A1 - Behler, Christina A1 - Böhning-Gaese, Katrin A1 - Classen, Alice A1 - Detsch, Florian A1 - Deckert, Jürgen A1 - Eardley, Connal D. A1 - Ferger, Stefan W. A1 - Fischer, Markus A1 - Gebert, Friederike A1 - Haas, Michael A1 - Helbig-Bonitz, Maria A1 - Hemp, Andreas A1 - Hemp, Claudia A1 - Kakengi, Victor A1 - Mayr, Antonia V. A1 - Ngereza, Christine A1 - Reudenbach, Christoph A1 - Röder, Juliane A1 - Rutten, Gemma A1 - Schellenberger Costa, David A1 - Schleuning, Matthias A1 - Ssymank, Axel A1 - Steffan-Dewenter, Ingolf A1 - Tardanico, Joseph A1 - Tschapka, Marco A1 - Vollstädt, Maximilian G. R. A1 - Wöllauer, Stephan A1 - Zhang, Jie A1 - Brandl, Roland A1 - Nauss, Thomas T1 - Potential of airborne LiDAR derived vegetation structure for the prediction of animal species richness at Mount Kilimanjaro JF - Remote Sensing N2 - The monitoring of species and functional diversity is of increasing relevance for the development of strategies for the conservation and management of biodiversity. Therefore, reliable estimates of the performance of monitoring techniques across taxa become important. Using a unique dataset, this study investigates the potential of airborne LiDAR-derived variables characterizing vegetation structure as predictors for animal species richness at the southern slopes of Mount Kilimanjaro. To disentangle the structural LiDAR information from co-factors related to elevational vegetation zones, LiDAR-based models were compared to the predictive power of elevation models. 17 taxa and 4 feeding guilds were modeled and the standardized study design allowed for a comparison across the assemblages. Results show that most taxa (14) and feeding guilds (3) can be predicted best by elevation with normalized RMSE values but only for three of those taxa and two of those feeding guilds the difference to other models is significant. Generally, modeling performances between different models vary only slightly for each assemblage. For the remaining, structural information at most showed little additional contribution to the performance. In summary, LiDAR observations can be used for animal species prediction. However, the effort and cost of aerial surveys are not always in proportion with the prediction quality, especially when the species distribution follows zonal patterns, and elevation information yields similar results. KW - biodiversity KW - species richness KW - LiDAR KW - elevation KW - partial least square regression KW - arthropods KW - birds KW - bats KW - predictive modeling Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262251 SN - 2072-4292 VL - 14 IS - 3 ER - TY - JOUR A1 - Njovu, Henry K. A1 - Steffan-Dewenter, Ingolf A1 - Gebert, Friederike A1 - Schellenberger Costa, David A1 - Kleyer, Michael A1 - Wagner, Thomas A1 - Peters, Marcell K. T1 - Plant traits mediate the effects of climate on phytophagous beetle diversity on Mt. Kilimanjaro JF - Ecology N2 - Patterns of insect diversity along elevational gradients are well described in ecology. However, it remains little tested how variation in the quantity, quality, and diversity of food resources influence these patterns. Here we analyzed the direct and indirect effects of climate, food quantity (estimated by net primary productivity), quality (variation in the specific leaf area index, leaf nitrogen to phosphorus and leaf carbon to nitrogen ratio), and food diversity (diversity of leaf traits) on the species richness of phytophagous beetles along the broad elevation and land use gradients of Mt. Kilimanjaro, Tanzania. We sampled beetles at 65 study sites located in both natural and anthropogenic habitats, ranging from 866 to 4,550 m asl. We used path analysis to unravel the direct and indirect effects of predictor variables on species richness. In total, 3,154 phytophagous beetles representing 19 families and 304 morphospecies were collected. We found that the species richness of phytophagous beetles was bimodally distributed along the elevation gradient with peaks at the lowest (˜866 m asl) and upper mid-elevations (˜3,200 m asl) and sharply declined at higher elevations. Path analysis revealed temperature- and climate-driven changes in primary productivity and leaf trait diversity to be the best predictors of changes in the species richness of phytophagous beetles. Species richness increased with increases in mean annual temperature, primary productivity, and with increases in the diversity of leaf traits of local ecosystems. Our study demonstrates that, apart from temperature, the quantity and diversity of food resources play a major role in shaping diversity gradients of phytophagous insects. Drivers of global change, leading to a change of leaf traits and causing reductions in plant diversity and productivity, may consequently reduce the diversity of herbivore assemblages. KW - plant functional traits KW - altitudinal gradient KW - Chrysomelidae KW - Curculionidae KW - diversity gradients KW - elevation gradient KW - functional diversity KW - herbivorous beetles KW - herbivory KW - more-individuals hypothesis KW - phytophagous beetles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257343 VL - 102 IS - 12 ER - TY - JOUR A1 - Ganuza, Cristina A1 - Redlich, Sarah A1 - Uhler, Johannes A1 - Tobisch, Cynthia A1 - Rojas-Botero, Sandra A1 - Peters, Marcell K. A1 - Zhang, Jie A1 - Benjamin, Caryl S. A1 - Englmeier, Jana A1 - Ewald, Jörg A1 - Fricke, Ute A1 - Haensel, Maria A1 - Kollmann, Johannes A1 - Riebl, Rebekka A1 - Uphus, Lars A1 - Müller, Jörg A1 - Steffan-Dewenter, Ingolf T1 - Interactive effects of climate and land use on pollinator diversity differ among taxa and scales JF - Science Advances N2 - Changes in climate and land use are major threats to pollinating insects, an essential functional group. Here, we unravel the largely unknown interactive effects of both threats on seven pollinator taxa using a multiscale space-for-time approach across large climate and land-use gradients in a temperate region. Pollinator community composition, regional gamma diversity, and community dissimilarity (beta diversity) of pollinator taxa were shaped by climate-land-use interactions, while local alpha diversity was solely explained by their additive effects. Pollinator diversity increased with reduced land-use intensity (forest < grassland < arable land < urban) and high flowering-plant diversity at different spatial scales, and higher temperatures homogenized pollinator communities across regions. Our study reveals declines in pollinator diversity with land-use intensity at multiple spatial scales and regional community homogenization in warmer and drier climates. Management options at several scales are highlighted to mitigate impacts of climate change on pollinators and their ecosystem services. KW - climate KW - land use KW - pollinator diversity Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301303 VL - 8 IS - 18 ER - TY - JOUR A1 - Peters, Marcell K. A1 - Classen, Alice A1 - Müller, Jörg A1 - Steffan‑Dewenter, Ingolf T1 - Increasing the phylogenetic coverage for understanding broad-scale diversity gradients JF - Oecologia N2 - Despite decades of scientific effort, there is still no consensus on the determinants of broad-scale gradients of animal diver-sity. We argue that general drivers of diversity are unlikely to be found among the narrowly defined taxa which are typically analyzed in studies of broad-scale diversity gradients because ecological niches evolve largely conservatively. This causes constraints in the use of available niche space leading to systematic differences in diversity gradients among taxa. We instead advocate studies of phylogenetically diverse animal communities along broad environmental gradients. Such multi-taxa communities are less constrained in resource use and diversification and may be better targets for testing major classical hypotheses on diversity gradients. Besides increasing the spatial scale in analyses, expanding the phylogenetic coverage may be a second way to achieve higher levels of generality in studies of broad-scale diversity gradients KW - elevational diversity KW - DNA metabarcoding KW - negative density dependence KW - productivity hypothesis KW - species energy theory KW - temperature-speciation hypothesis Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232519 SN - 0029-8549 VL - 192 ER - TY - JOUR A1 - Kronauer, Daniel J. C. A1 - Peters, Marcell K. A1 - Schoning, Caspar A1 - Boomsma, Jacobus J. T1 - Hybridization in East African swarm-raiding army ants N2 - Background: Hybridization can have complex effects on evolutionary dynamics in ants because of the combination of haplodiploid sex-determination and eusociality. While hybrid non-reproductive workers have been found in a range of species, examples of gene-flow via hybrid queens and males are rare. We studied hybridization in East African army ants (Dorylus subgenus Anomma) using morphology, mitochondrial DNA sequences, and nuclear microsatellites. Results: While the mitochondrial phylogeny had a strong geographic signal, different species were not recovered as monophyletic. At our main study site at Kakamega Forest, a mitochondrial haplotype was shared between a “Dorylus molestus-like” and a “Dorylus wilverthi-like” form. This pattern is best explained by introgression following hybridization between D. molestus and D. wilverthi. Microsatellite data from workers showed that the two morphological forms correspond to two distinct genetic clusters, with a significant proportion of individuals being classified as hybrids. Conclusions: We conclude that hybridization and gene-flow between the two army ant species D. molestus and D. wilverthi has occurred, and that mating between the two forms continues to regularly produce hybrid workers. Hybridization is particularly surprising in army ants because workers have control over which males are allowed to mate with a young virgin queen inside the colony. KW - Zoologie KW - Dorylinae KW - Formicidae KW - introgression KW - microsatellites KW - mtDNA KW - gene flow Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68798 ER -