TY - JOUR A1 - Mansour, Ahmed M. A1 - Steiger, Christoph A1 - Nagel, Christoph A1 - Schatzschneider, Ulrich T1 - Wavelength‐dependent control of the CO release kinetics of manganese(I) tricarbonyl PhotoCORMs with benzimidazole coligands JF - European Journal of Inorganic Chemistry N2 - A series of photoactivatable CO‐releasing molecules (PhotoCORMs) was prepared from manganese pentacarbonyl bromide and 1H‐benzimidazol‐2‐ylmethyl‐(N‐phenyl)amine ligands (L) bearing different electron‐donating and electron‐withdrawing groups R = H, 4‐CH\(_3\), 4‐OCH\(_3\), 4‐Cl, 4‐NO\(_2\), 2‐, 3‐, and 4‐COOCH\(_3\) on the phenyl substituent to give octahedral manganese(I) complexes of the general formula [MnBr(CO)\(_3\)(L)]. Aerated DMSO solutions of the compounds are stable in the dark for 16 h with no CO release. However, the compounds rapidly release CO upon illumination at 412–525 nm, depending on the substitution pattern. Its influence on the photophysical and photochemical properties was systematically explored using UV/Vis spectroscopy and CO release measurements with a commercial gas sensor system. In the nitro‐substituted compound, the electronically excited state switched from benzimidazole‐ to phenyl‐centered, leading to a markedly different photochemical behavior of this visible‐light activated PhotoCORM. KW - CO‐releasing molecules (CORMs) KW - Manganese Carbonyl ligands KW - Benzimidazole KW - TDDFT Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218362 VL - 2019 IS - 42 ER - TY - JOUR A1 - Brammer, Jan C. A1 - Blanke, Gerd A1 - Kellner, Claudia A1 - Hoffmann, Alexander A1 - Herres-Pawlis, Sonja A1 - Schatzschneider, Ulrich T1 - TUCAN: A molecular identifier and descriptor applicable to the whole periodic table from hydrogen to oganesson JF - Journal of Cheminformatics N2 - TUCAN is a canonical serialization format that is independent of domain-specific concepts of structure and bonding. The atomic number is the only chemical feature that is used to derive the TUCAN format. Other than that, the format is solely based on the molecular topology. Validation is reported on a manually curated test set of molecules as well as a library of non-chemical graphs. The serialization procedure generates a canonical “tuple-style” output which is bidirectional, allowing the TUCAN string to serve as both identifier and descriptor. Use of the Python NetworkX graph library facilitated a compact and easily extensible implementation. KW - software library KW - cheminformatics KW - molecular representation KW - chemical identifier KW - canonicalization KW - molecule isomorphism KW - line notations KW - molecular graphs KW - python Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-299730 SN - 1758-2946 VL - 14 IS - 1 ER - TY - JOUR A1 - Schulz, Ellina A1 - Mawamba, Viviane A1 - Löhr, Mario A1 - Hagemann, Carsten A1 - Friedrich, Alexandra A1 - Schatzschneider, Ulrich T1 - Structure–activity relations of Pd(II) and Pt(II) thiosemicarbazone complexes on different human glioblastoma cell lines JF - Zeitschrift für Anorganische und Allgemeine Chemie N2 - Ten thiosemicarbazone ligands obtained by condensation of pyridine-2-carbaldehyde, quinoline-2-carbaldehyde, 2-acetylpyridine, 2-acetylquinoline, or corresponding 2-pyridyl ketones with thiosemicarbazides RNHC(S)NHNH\(_{2}\) and R=CH\(_{3}\), C\(_{6}\)H\(_{5}\) were prepared in good yield. The reaction of [PdCl\(_{2}\)(cod)] with cod=1,5-cyclooctadiene or K\(_{2}\)[PtCl\(_{4}\)] resulted in a total of 17 Pd(II) and Pt(II) complexes isolated in excellent purity, as demonstrated by \(^{1}\)H, \(^{13}\)C, and, where applicable, \(^{195\)Pt NMR spectroscopy combined with CHNS analysis. The cytotoxicity of the title compounds was studied on four human glioblastoma cell lines (GaMG, U87, U138, and U343). The most active compound, with a Pd(II) metal centre, a 2-quinolinyl ring, and methyl groups on both the proximal C and distal N atoms exhibited an EC\(_{50}\) value of 2.1 μM on the GaMG cell lines, thus being slightly more active than cisplatin (EC\(_{50}\) 3.4 μM) and significantly more potent than temozolomide (EC\(_{50}\) 67.1 μM). Surprisingly, the EC\(_{50}\) values were inversely correlated with the lipophilicity, as determined with the “shake-flask method”, and decreased with the length of the alkyl substituents (C\(_{1}\)>C\(_{8}\)>C\(_{10}\)). Correlation with the different structural motifs showed that for the most promising anticancer activity, a maximum of two aromatic rings (either quinolinyl or pyridyl plus phenyl) combined with one methyl group are favoured and the Pd(II) complexes are slightly more potent than their Pt(II) analogues. KW - glioblastoma KW - platinum KW - palladium KW - thiosemicarbazone KW - anticancer activity Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318281 SN - 0044-2313 VL - 648 IS - 12 ER - TY - JOUR A1 - Hoyer, Jan A1 - Schatzschneider, Ulrich A1 - Schulz-Siegmund, Michaela A1 - Neundorf, Ines T1 - Dimerization of a cell-penetrating peptide leads to enhanced cellular uptake and drug delivery JF - Beilstein Journal of Organic Chemistry N2 - Over the past 20 years, cell-penetrating peptides (CPPs) have gained tremendous interest due to their ability to deliver a variety of therapeutically active molecules that would otherwise be unable to cross the cellular membrane due to their size or hydrophilicity. Recently, we reported on the identification of a novel CPP, sC18, which is derived from the C-terminus of the 18 kDa cationic antimicrobial protein. Furthermore, we demonstrated successful application of sC18 for the delivery of functionalized cyclopentadienyl manganese tricarbonyl (cymantrene) complexes to tumor cell lines, inducing high cellular toxicity. In order to increase the potential of the organometallic complexes to kill tumor cells, we were looking for a way to enhance cellular uptake. Therefore, we designed a branched dimeric variant of sC18, (sC18)\(_2\), which was shown to have a dramatically improved capacity to internalize into various cell lines, even primary cells, using flow cytometry and fluorescence microscopy. Cell viability assays indicated increased cytotoxicity of the dimer presumably caused by membrane leakage; however, this effect turned out to be dependent on the specific cell type. Finally, we could show that conjugation of a functionalized cymantrene with (sC18)\(_2\) leads to significant reduction of its IC\(_{50}\) value in tumor cells compared to the respective sC18 conjugate, proving that dimerization is a useful method to increase the drug-delivery potential of a cell-penetrating peptide. KW - peptides KW - internalization studies KW - drug delivery KW - cell-penetrating peptides KW - anti-tumor agents KW - organometallic complexes Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133933 VL - 8 ER - TY - JOUR A1 - Tinajero-Trejo, Mariana A1 - Rana, Namrata A1 - Nagel, Christoph A1 - Jesse, Helen E. A1 - Smith, Thomas W. A1 - Wareham, Lauren K. A1 - Hippler, Michael A1 - Schatzschneider, Ulrich A1 - Poole, Robert K. T1 - Antimicrobial Activity of the Manganese Photoactivated Carbon Monoxide-Releasing Molecule [Mn(CO)\(_3\)(tpa-kappa\(^3\)N)]\(^+\) Against a Pathogenic Escherichia coli that Causes Urinary Infections JF - Antioxidants & Redox Signaling N2 - Aims: We set out to investigate the antibacterial activity of a new Mn-based photoactivated carbon monoxide-releasing molecule (PhotoCORM, [Mn(CO)\(_3\)(tpa-kappa\(^3\)N)]\(^+\)) against an antibiotic-resistant uropathogenic strain (EC958) of Escherichia coli. Results: Activated PhotoCORM inhibits growth and decreases viability of E. coli EC958, but non-illuminated carbon monoxide-releasing molecule (CORM) is without effect. NADH-supported respiration rates are significantly decreased by activated PhotoCORM, mimicking the effect of dissolved CO gas. CO from the PhotoCORM binds to intracellular targets, namely respiratory oxidases in strain EC958 and a bacterial globin heterologously expressed in strain K-12. However, unlike previously characterized CORMs, the PhotoCORM is not significantly accumulated in cells, as deduced from the cellular manganese content. Activated PhotoCORM reacts avidly with hydrogen peroxide producing hydroxyl radicals; the observed peroxide-enhanced toxicity of the PhotoCORM is ameliorated by thiourea. The PhotoCORM also potentiates the effect of the antibiotic, doxycycline. Innovation: The present work investigates for the first time the antimicrobial activity of a light-activated PhotoCORM against an antibiotic-resistant pathogen. A comprehensive study of the effects of the PhotoCORM and its derivative molecules upon illumination is performed and mechanisms of toxicity of the activated PhotoCORM are investigated. Conclusion: The PhotoCORM allows a site-specific and time-controlled release of CO in bacterial cultures and has the potential to provide much needed information on the generality of CORM activities in biology. Understanding the mechanism(s) of activated PhotoCORM toxicity will be key in exploring the potential of this and similar compounds as antimicrobial agents, perhaps in combinatorial therapies with other agents. KW - intracellular hydrogen-peroxide KW - campylobacter-jejuni KW - oxygen-metabolism KW - deficient mutant KW - oxidative stress KW - aqueous-solution KW - metal caponyls KW - RU(CO)(3)CL(GLYCINATE) KW - bacteria KW - enzyme Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188910 VL - 24 IS - 14 ER - TY - JOUR A1 - Betts, Jonathan A1 - Nagel, Christopher A1 - Schatzschneider, Ulrich A1 - Poole, Robert A1 - La Ragione, Robert M. T1 - Antimicrobial activity of carbon monoxide-releasing molecule [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br versus multidrug-resistant isolates of Avian Pathogenic \(Escherichia\) \(coli\) and its synergy with colistin JF - PLoS ONE N2 - Antimicrobial resistance is a growing global concern in human and veterinary medicine, with an ever-increasing void in the arsenal of clinicians. Novel classes of compounds including carbon monoxoide-releasing molecules (CORMs), for example the light-activated metal complex [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br, could be used as alternatives/to supplement traditional antibacterials. Avian pathogenic \(Escherichia\) \(coli\) (APEC) represent a large reservoir of antibiotic resistance and can cause serious clinical disease in poultry, with potential as zoonotic pathogens, due to shared serotypes and virulence factors with human pathogenic \(E.\) \(coli\). The \(in\) \(vitro\) activity of [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br against multidrug-resistant APECs was assessed via broth microtitre dilution assays and synergy testing with colistin performed using checkerboard and time-kill assays. \(In\) \(vivo\) antibacterial activity of [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br alone and in combination with colistin was determined using the \(Galleria\) \(mellonella\) wax moth larvae model. Animals were monitored for life/death, melanisation and bacterial numbers enumerated from larval haemolymph. \(In\) \(vitro\) testing produced relatively high [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br minimum inhibitory concentrations (MICs) of 1024 mg/L. However, its activity was significantly increased with the addition of colistin, bringing MICs down to \(\geq\)32 mg/L. This synergy was confirmed in time-kill assays. \(In\) \(vivo\) assays showed that the combination of [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br with colistin produced superior bacterial killing and significantly increased larval survival. In both \(in\) \(vitro\) and \(in\) \(vivo\) assays light activation was not required for antibacterial activity. This data supports further evaluation of [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br as a potential agent for treatment of systemic infections in humans and animals, when used with permeabilising agents such as colistin. KW - Chemistry KW - Larvae KW - Antibacterials KW - Antibiotics KW - Birds KW - Bacterial pathogens KW - Manganese KW - Antibiotic resistance KW - Antibacterial therapy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173687 VL - 12 IS - 10 ER -