TY - JOUR A1 - Schreiber, Laura M. A1 - Lohr, David A1 - Baltes, Steffen A1 - Vogel, Ulrich A1 - Elabyad, Ibrahim A. A1 - Bille, Maya A1 - Reiter, Theresa A1 - Kosmala, Aleksander A1 - Gassenmaier, Tobias A1 - Stefanescu, Maria R. A1 - Kollmann, Alena A1 - Aures, Julia A1 - Schnitter, Florian A1 - Pali, Mihaela A1 - Ueda, Yuichiro A1 - Williams, Tatiana A1 - Christa, Martin A1 - Hofmann, Ulrich A1 - Bauer, Wolfgang A1 - Gerull, Brenda A1 - Zernecke, Alma A1 - Ergün, Süleyman A1 - Terekhov, Maxim T1 - Ultra-high field cardiac MRI in large animals and humans for translational cardiovascular research JF - Frontiers in Cardiovascular Medicine N2 - A key step in translational cardiovascular research is the use of large animal models to better understand normal and abnormal physiology, to test drugs or interventions, or to perform studies which would be considered unethical in human subjects. Ultrahigh field magnetic resonance imaging (UHF-MRI) at 7 T field strength is becoming increasingly available for imaging of the heart and, when compared to clinically established field strengths, promises better image quality and image information content, more precise functional analysis, potentially new image contrasts, and as all in-vivo imaging techniques, a reduction of the number of animals per study because of the possibility to scan every animal repeatedly. We present here a solution to the dual use problem of whole-body UHF-MRI systems, which are typically installed in clinical environments, to both UHF-MRI in large animals and humans. Moreover, we provide evidence that in such a research infrastructure UHF-MRI, and ideally combined with a standard small-bore UHF-MRI system, can contribute to a variety of spatial scales in translational cardiovascular research: from cardiac organoids, Zebra fish and rodent hearts to large animal models such as pigs and humans. We present pilot data from serial CINE, late gadolinium enhancement, and susceptibility weighted UHF-MRI in a myocardial infarction model over eight weeks. In 14 pigs which were delivered from a breeding facility in a national SARS-CoV-2 hotspot, we found no infection in the incoming pigs. Human scanning using CINE and phase contrast flow measurements provided good image quality of the left and right ventricle. Agreement of functional analysis between CINE and phase contrast MRI was excellent. MRI in arrested hearts or excised vascular tissue for MRI-based histologic imaging, structural imaging of myofiber and vascular smooth muscle cell architecture using high-resolution diffusion tensor imaging, and UHF-MRI for monitoring free radicals as a surrogate for MRI of reactive oxygen species in studies of oxidative stress are demonstrated. We conclude that UHF-MRI has the potential to become an important precision imaging modality in translational cardiovascular research. KW - ultrahigh-field MRI KW - large animal models KW - translational research KW - research infrastructure KW - heart KW - organoid KW - pig KW - cardiovascular MRI Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-317398 SN - 2297-055X VL - 10 ER - TY - JOUR A1 - Wildgruber, Moritz A1 - Aschenbrenner, Teresa A1 - Wendorff, Heiko A1 - Czubba, Maria A1 - Glinzer, Almut A1 - Haller, Bernhard A1 - Schiemann, Matthias A1 - Zimmermann, Alexander A1 - Berger, Hermann A1 - Eckstein, Hans-Henning A1 - Meier, Reinhard A1 - Wohlgemuth, Walter A. A1 - Libby, Peter A1 - Zernecke, Alma T1 - The "Intermediate" CD14\(^{++}\)CD16\(^{+}\) monocyte subset increases in severe peripheral artery disease in humans JF - Scientific Reports N2 - Monocytes are key players in atherosclerotic. Human monocytes display a considerable heterogeneity and at least three subsets can be distinguished. While the role of monocyte subset heterogeneity has already been well investigated in coronary artery disease (CAD), the knowledge about monocytes and their heterogeneity in peripheral artery occlusive disease (PAOD) still is limited. Therefore, we aimed to investigate monocyte subset heterogeneity in patients with PAOD. Peripheral blood was obtained from 143 patients suffering from PAOD (Rutherford stage I to VI) and three monocyte subsets were identified by flow cytometry: CD14\(^{++}\)CD16\(^{-}\) classical monocytes, CD14\(^{+}\)CD16\(^{++}\) non-classical monocytes and CD14\(^{++}\)CD16\(^{+}\) intermediate monocytes. Additionally the expression of distinct surface markers (CD106, CD162 and myeloperoxidase MPO) was analyzed. Proportions of CD14\(^{++}\)CD16\(^{+}\) intermediate monocyte levels were significantly increased in advanced stages of PAOD, while classical and non-classical monocytes displayed no such trend. Moreover, CD162 and MPO expression increased significantly in intermediate monocyte subsets in advanced disease stages. Likewise, increased CD162 and MPO expression was noted in CD14\(^{++}\)CD16\(^{-}\) classical monocytes. These data suggest substantial dynamics in monocyte subset distributions and phenotypes in different stages of PAOD, which can either serve as biomarkers or as potential therapeutic targets to decrease the inflammatory burden in advanced stages of atherosclerosis. KW - peripheral artery occlusive disease KW - monocyte subset KW - humans Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167476 VL - 6 IS - 39483 ER - TY - JOUR A1 - Simsekyilmaz, Sakine A1 - Liehn, Elisa A. A1 - Weinandy, Stefan A1 - Schreiber, Fabian A1 - Megens, Remco T. A. A1 - Theelen, Wendy A1 - Smeets, Ralf A1 - Jockenhövel, Stefan A1 - Gries, Thomas A1 - Möller, Martin A1 - Klee, Doris A1 - Weber, Christian A1 - Zernecke, Alma T1 - Targeting In-Stent-Stenosis with RGD- and CXCL1-Coated Mini-Stents in Mice JF - PLoS ONE N2 - Atherosclerotic lesions that critically narrow the artery can necessitate an angioplasty and stent implantation. Long-term therapeutic effects, however, are limited by excessive arterial remodeling. We here employed a miniaturized nitinol-stent coated with star-shaped polyethylenglycole (star-PEG), and evaluated its bio-functionalization with RGD and CXCL1 for improving in-stent stenosis after implantation into carotid arteries of mice. Nitinol foils or stents (bare metal) were coated with star-PEG, and bio-functionalized with RGD, or RGD/CXCL1. Cell adhesion to star-PEG-coated nitinol foils was unaltered or reduced, whereas bio-functionalization with RGD but foremost RGD/CXCL1 increased adhesion of early angiogenic outgrowth cells (EOCs) and endothelial cells but not smooth muscle cells when compared with bare metal foils. Stimulation of cells with RGD/CXCL1 furthermore increased the proliferation of EOCs. In vivo, bio-functionalization with RGD/CXCL1 significantly reduced neointima formation and thrombus formation, and increased re-endothelialization in apoE\(^{-/-}\) carotid arteries compared with bare-metal nitinol stents, star-PEG-coated stents, and stents bio-functionalized with RGD only. Bio-functionalization of star-PEG-coated nitinol-stents with RGD/CXCL1 reduced in-stent neointima formation. By supporting the adhesion and proliferation of endothelial progenitor cells, RGD/CXCL1 coating of stents may help to accelerate endothelial repair after stent implantation, and thus may harbor the potential to limit the complication of in-stent restenosis in clinical approaches. KW - carotid arteries KW - polymers KW - stent implantation KW - coatings KW - endothelial cells KW - mice KW - fluorescence microscopy KW - stem cells Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179745 VL - 11 IS - 5 ER - TY - JOUR A1 - Winter, Patrick M. A1 - Andelovic, Kristina A1 - Kampf, Thomas A1 - Hansmann, Jan A1 - Jakob, Peter Michael A1 - Bauer, Wolfgang Rudolf A1 - Zernecke, Alma A1 - Herold, Volker T1 - Simultaneous measurements of 3D wall shear stress and pulse wave velocity in the murine aortic arch JF - Journal of Cardiovascular Magnetic Resonance N2 - Purpose Wall shear stress (WSS) and pulse wave velocity (PWV) are important parameters to characterize blood flow in the vessel wall. Their quantification with flow-sensitive phase-contrast (PC) cardiovascular magnetic resonance (CMR), however, is time-consuming. Furthermore, the measurement of WSS requires high spatial resolution, whereas high temporal resolution is necessary for PWV measurements. For these reasons, PWV and WSS are challenging to measure in one CMR session, making it difficult to directly compare these parameters. By using a retrospective approach with a flexible reconstruction framework, we here aimed to simultaneously assess both PWV and WSS in the murine aortic arch from the same 4D flow measurement. Methods Flow was measured in the aortic arch of 18-week-old wildtype (n = 5) and ApoE\(^{−/−}\) mice (n = 5) with a self-navigated radial 4D-PC-CMR sequence. Retrospective data analysis was used to reconstruct the same dataset either at low spatial and high temporal resolution (PWV analysis) or high spatial and low temporal resolution (WSS analysis). To assess WSS, the aortic lumen was labeled by semi-automatically segmenting the reconstruction with high spatial resolution. WSS was determined from the spatial velocity gradients at the lumen surface. For calculation of the PWV, segmentation data was interpolated along the temporal dimension. Subsequently, PWV was quantified from the through-plane flow data using the multiple-points transit-time method. Reconstructions with varying frame rates and spatial resolutions were performed to investigate the influence of spatiotemporal resolution on the PWV and WSS quantification. Results 4D flow measurements were conducted in an acquisition time of only 35 min. Increased peak flow and peak WSS values and lower errors in PWV estimation were observed in the reconstructions with high temporal resolution. Aortic PWV was significantly increased in ApoE\(^{−/−}\) mice compared to the control group (1.7 ± 0.2 versus 2.6 ± 0.2 m/s, p < 0.001). Mean WSS magnitude values averaged over the aortic arch were (1.17 ± 0.07) N/m\(^2\) in wildtype mice and (1.27 ± 0.10) N/m\(^2\) in ApoE\(^{−/−}\) mice. Conclusion The post processing algorithm using the flexible reconstruction framework developed in this study permitted quantification of global PWV and 3D-WSS in a single acquisition. The possibility to assess both parameters in only 35 min will markedly improve the analyses and information content of in vivo measurements. KW - 4D flow KW - pulse wave velocity KW - wall shear stress KW - radial KW - self-navigation KW - mouse KW - aortic arch KW - atherosclerosis KW - mice KW - flow KW - plaque KW - CMR KW - quantification KW - microscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259152 VL - 23 IS - 1 ER - TY - JOUR A1 - Endres, Marcel A1 - Kneitz, Susanne A1 - Orth, Martin F. A1 - Perera, Ruwan K. A1 - Zernecke, Alma A1 - Butt, Elke T1 - Regulation of matrix metalloproteinases (MMPs) expression and secretion in MDA-MB-231 breast cancer cells by LIM and SH3 protein 1 (LASP1) JF - Oncotarget N2 - The process of tumor invasion requires degradation of extracellular matrix by proteolytic enzymes. Cancer cells form protrusive invadopodia, which produce and release matrix metalloproteinases (MMPs) to degrade the basement membrane thereby enabling metastasis. We investigated the effect of LASP1, a newly identified protein in invadopodia, on expression, secretion and activation of MMPs in invasive breast tumor cell lines. By analyzing microarray data of in-house generated control and LASP1-depleted MDA-MB-231 breast cancer cells, we observed downregulation of MMP1, -3 and -9 upon LASP1 depletion. This was confirmed by Western blot analysis. Conversely, rescue experiments restored in part MMP expression and secretion. The regulatory effect of LASP1 on MMP expression was also observed in BT-20 breast cancer cells as well as in prostate and bladder cancer cell lines. In line with bioinformatic FunRich analysis of our data, which mapped a high regulation of transcription factors by LASP1, public microarray data analysis detected a correlation between high LASP1 expression and enhanced c-Fos levels, a protein that is part of the transcription factor AP-1 and known to regulate MMP expression. Compatibly, in luciferase reporter assays, AP-1 showed a decreased transcriptional activity after LASP1 knockdown. Zymography assays and Western blot analysis revealed an additional promotion of MMP secretion into the extracellular matrix by LASP1, thus, most likely, altering the microenvironment during cancer progression. The newly identified role of LASP1 in regulating matrix degradation by affecting MMP transcription and secretion elucidated the migratory potential of LASP1 overexpressing aggressive tumor cells in earlier studies. KW - LASP1 KW - c-Fos KW - extracellular matrix KW - AP-1 KW - matrix metalloproteinases KW - breast cancer Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176920 VL - 7 IS - 39 ER - TY - JOUR A1 - Cochain, Clement A1 - Chaudhari, Sweena M. A1 - Koch, Miriam A1 - Wiendl, Heinz A1 - Eckstein, Hans-Henning A1 - Zernecke, Alma T1 - Programmed Cell Death-1 Deficiency Exacerbates T Cell Activation and Atherogenesis despite Expansion of Regulatory T Cells in Atherosclerosis-Prone Mice JF - PLoS ONE N2 - T cell activation represents a double-edged sword in atherogenesis, as it promotes both pro-inflammatory T cell activation and atheroprotective Foxp3(+) regulatory T cell (Treg) responses. Here, we investigated the role of the co-inhibitory receptor programmed cell death-1 (PD-1) in T cell activation and CD4(+) T cell polarization towards pro-atherogenic or atheroprotective responses in mice. Mice deficient for both low density lipoprotein receptor and PD-1 (Ldlr(-/-)Pd1(-/-)) displayed striking increases in systemic CD4(+) and CD8(+) T cell activation after 9 weeks of high fat diet feeding, associated with an expansion of both pro-atherogenic IFNγ-secreting T helper 1 cells and atheroprotective Foxp3+ Tregs. Importantly, PD-1 deficiency did not affect Treg suppressive function in vitro. Notably, PD-1 deficiency exacerbated atherosclerotic lesion growth and entailed a massive infiltration of T cells in atherosclerotic lesions. In addition, aggravated hypercholesterolemia was observed in Ldlr(-/-)Pd1(-/-) mice. In conclusion, we here demonstrate that although disruption of PD-1 signaling enhances both pro- and anti-atherogenic T cell responses in Ldlr(-/-) mice, pro-inflammatory T cell activation prevails and enhances dyslipidemia, vascular inflammation and atherosclerosis. KW - nutritional deficiencies KW - atherosclerosis KW - spleen KW - aorta KW - diet KW - cytotoxic T cells KW - regulatory T cells KW - T cells Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119823 SN - 1932-6203 VL - 9 IS - 4 ER - TY - JOUR A1 - Butt, Elke A1 - Stempfle, Katrin A1 - Lister, Lorenz A1 - Wolf, Felix A1 - Kraft, Marcella A1 - Herrmann, Andreas B. A1 - Viciano, Cristina Perpina A1 - Weber, Christian A1 - Hochhaus, Andreas A1 - Ernst, Thomas A1 - Hoffmann, Carsten A1 - Zernecke, Alma A1 - Frietsch, Jochen J. T1 - Phosphorylation-dependent differences in CXCR4-LASP1-AKT1 interaction between breast cancer and chronic myeloid leukemia JF - Cells N2 - The serine/threonine protein kinase AKT1 is a downstream target of the chemokine receptor 4 (CXCR4), and both proteins play a central role in the modulation of diverse cellular processes, including proliferation and cell survival. While in chronic myeloid leukemia (CML) the CXCR4 is downregulated, thereby promoting the mobilization of progenitor cells into blood, the receptor is highly expressed in breast cancer cells, favoring the migratory capacity of these cells. Recently, the LIM and SH3 domain protein 1 (LASP1) has been described as a novel CXCR4 binding partner and as a promoter of the PI3K/AKT pathway. In this study, we uncovered a direct binding of LASP1, phosphorylated at S146, to both CXCR4 and AKT1, as shown by immunoprecipitation assays, pull-down experiments, and immunohistochemistry data. In contrast, phosphorylation of LASP1 at Y171 abrogated these interactions, suggesting that both LASP1 phospho-forms interact. Finally, findings demonstrating different phosphorylation patterns of LASP1 in breast cancer and chronic myeloid leukemia may have implications for CXCR4 function and tyrosine kinase inhibitor treatment. KW - LASP1 KW - CXCR4 KW - AKT1 KW - CML KW - breast cancer Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200638 SN - 2073-4409 VL - 9 IS - 2 ER - TY - JOUR A1 - Wu, Hao A1 - Zhao, Xiufeng A1 - Hochrein, Sophia M. A1 - Eckstein, Miriam A1 - Gubert, Gabriela F. A1 - Knöpper, Konrad A1 - Mansilla, Ana Maria A1 - Öner, Arman A1 - Doucet-Ladevèze, Remi A1 - Schmitz, Werner A1 - Ghesquière, Bart A1 - Theurich, Sebastian A1 - Dudek, Jan A1 - Gasteiger, Georg A1 - Zernecke, Alma A1 - Kobold, Sebastian A1 - Kastenmüller, Wolfgang A1 - Vaeth, Martin T1 - Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming JF - Nature Communications N2 - T cell exhaustion is a hallmark of cancer and persistent infections, marked by inhibitory receptor upregulation, diminished cytokine secretion, and impaired cytolytic activity. Terminally exhausted T cells are steadily replenished by a precursor population (Tpex), but the metabolic principles governing Tpex maintenance and the regulatory circuits that control their exhaustion remain incompletely understood. Using a combination of gene-deficient mice, single-cell transcriptomics, and metabolomic analyses, we show that mitochondrial insufficiency is a cell-intrinsic trigger that initiates the functional exhaustion of T cells. At the molecular level, we find that mitochondrial dysfunction causes redox stress, which inhibits the proteasomal degradation of hypoxia-inducible factor 1α (HIF-1α) and promotes the transcriptional and metabolic reprogramming of Tpex cells into terminally exhausted T cells. Our findings also bear clinical significance, as metabolic engineering of chimeric antigen receptor (CAR) T cells is a promising strategy to enhance the stemness and functionality of Tpex cells for cancer immunotherapy. KW - cytotoxic T cells KW - infection KW - lymphocyte differentiation KW - translational research Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358052 VL - 14 ER - TY - JOUR A1 - Rossow, Leonie A1 - Veitl, Simona A1 - Vorlová, Sandra A1 - Wax, Jacqueline K. A1 - Kuhn, Anja E. A1 - Maltzahn, Verena A1 - Upcin, Berin A1 - Karl, Franziska A1 - Hoffmann, Helene A1 - Gätzner, Sabine A1 - Kallius, Matthias A1 - Nandigama, Rajender A1 - Scheld, Daniela A1 - Irmak, Ster A1 - Herterich, Sabine A1 - Zernecke, Alma A1 - Ergün, Süleyman A1 - Henke, Erik T1 - LOX-catalyzed collagen stabilization is a proximal cause for intrinsic resistance to chemotherapy JF - Oncogene N2 - The potential of altering the tumor ECM to improve drug response remains fairly unexplored. To identify targets for modification of the ECM aiming to improve drug response and overcome resistance, we analyzed expression data sets from pre-treatment patient cohorts. Cross-evaluation identified a subset of chemoresistant tumors characterized by increased expression of collagens and collagen-stabilizing enzymes. We demonstrate that strong collagen expression and stabilization sets off a vicious circle of self-propagating hypoxia, malignant signaling, and aberrant angiogenesis that can be broken by an appropriate auxiliary intervention: Interfering with collagen stabilization by inhibition of lysyl oxidases significantly enhanced response to chemotherapy in various tumor models, even in metastatic disease. Inhibition of collagen stabilization by itself can reduce or enhance tumor growth depending on the tumor type. The mechanistical basis for this behavior is the dependence of the individual tumor on nutritional supply on one hand and on high tissue stiffness for FAK signaling on the other. KW - Cancer models KW - Cancer therapeutic resistance KW - Targeted therapies KW - Tumour angiogenesis Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227008 VL - 37 ER - TY - JOUR A1 - Herrmann, Andreas B. A1 - Müller, Martha‐Lena A1 - Orth, Martin F. A1 - Müller, Jörg P. A1 - Zernecke, Alma A1 - Hochhaus, Andreas A1 - Ernst, Thomas A1 - Butt, Elke A1 - Frietsch, Jochen J. T1 - Knockout of LASP1 in CXCR4 expressing CML cells promotes cell persistence, proliferation and TKI resistance JF - Journal of Cellular and Molecular Medicine N2 - Chronic myeloid leukaemia (CML) is a clonal myeloproliferative stem cell disorder characterized by the constitutively active BCR‐ABL tyrosine kinase. The LIM and SH3 domain protein 1 (LASP1) has recently been identified as a novel BCR‐ABL substrate and is associated with proliferation, migration, tumorigenesis and chemoresistance in several cancers. Furthermore, LASP1 was shown to bind to the chemokine receptor 4 (CXCR4), thought to be involved in mechanisms of relapse. In order to identify potential LASP1‐mediated pathways and related factors that may help to further eradicate minimal residual disease (MRD), the effect of LASP1 on processes involved in progression and maintenance of CML was investigated. The present data indicate that not only overexpression of CXCR4, but also knockout of LASP1 contributes to proliferation, reduced apoptosis and migration as well as increased adhesive potential of K562 CML cells. Furthermore, LASP1 depletion in K562 CML cells leads to decreased cytokine release and reduced NK cell‐mediated cytotoxicity towards CML cells. Taken together, these results indicate that in CML, reduced levels of LASP1 alone and in combination with high CXCR4 expression may contribute to TKI resistance. KW - BCR‐ABL KW - CML KW - CXCR4 KW - LASP1 KW - nilotinib KW - precursor cells Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214122 VL - 24 IS - 5 SP - 2942 EP - 2955 ER -