TY - THES A1 - Seibt, Joachim T1 - Theoretical investigations on the spectroscopy of molecular aggregates T1 - Theoretische Untersuchungen zur Spektroskopie von Molekülaggregaten N2 - Die spektroskopischen Eigenschaften von Molekülaggregaten wurden mittels quantendynamischer Berechnungen untersucht. Hierbei wurden sowohl lineare als auch nichtlineare Spektroskopietechniken einbezogen. Zur Simulation von Absorptions- und CD-Spektroskopie wurden Kopplungseffekte sowie die relative Orientierung der Monomer-Einheiten in den Modellen berücksichtigt, um gemessene Spektren reproduzieren und so die entsprechenden Parameter zu bestimmen. Zur genaueren Beschreibung wurden auch Ergebnisse quantenchemischer Rechnungen verwendet. Darüber hinaus wurden Untersuchungen zur nichtlinearen optischen Spektroskopie an Dimeren durchgeführt. N2 - The spectroscopic properties of molecular aggregates have been investigated by means of quantum dynamical calculations. Thereby both linear and nonlinear spectroscopic techniques have been taken into account. For the simulation of absorption and CD-spectra, coupling effects were regarded as well as the relative orientation of the monomer units in order to determine the parameters by reproducing measured spectra. For a more detailled description, results from quantum chemical calculations have also been included. Furthermore, investigations on nonlinear spectroscopy of molecular dimers have been performed. KW - Theoretische Chemie KW - Aggregat KW - Nichtlineare Spektroskopie KW - CD-Spektroskopie KW - Quantenchemie KW - Quantendynamik KW - quantum dynamics Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-37218 ER - TY - THES A1 - Brüning, Christoph T1 - Quantendynamische Untersuchungen zur Exzitonenlokalisierung und linearen Spektroskopie in molekularen Oligomeren T1 - Quantum dynamical study on excition localization and linear spectroscopy in molecular oligomers N2 - Diese Arbeit befasst sich mit den spektralen Signaturen molekularer Aggregate sowie mit ihrer Wellenpakets- und Populationsdynamik in angeregten Zuständen unter dem Einfluss externer Störungen und photoinduzierter Asymmetrie. Hierzu werden quantendynamische numerische Berechnungen mit der Multi-Configuration Time-Dependent Hartree-Methode durchgeführt, um die angesprochenen Prozesse zu charakterisieren. Durch die Konzentration auf Modellrechnungen sind die qualitativen Ergebnisse dieser Arbeit auf viele Systeme übertragbar. Zunächst widmet sich die Arbeit den linearen UV/Vis-Absorptions- und Emissionsspektren von Aggregaten. Hier zeigt sich, dass die Anzahl der Größen, die ein Absorptionsspektrum bestimmen -- etwa die Anzahl der Chromophore, ihre geometrischen Anordnung und die elektronische Kopplung zwischen ihnen -- zu groß ist, um ihre numerischen Werte eindeutig aus den Spektren bestimmen zu können. Insbesondere können sich die Auswirkungen der Aggregatgröße und der Kopplungsstärke gegenseitig so beeinflussen, dass die Form der Absorptionsbande bei sehr unterschiedlichen Systemen nahezu identisch ist. Daraus ergeben sich Schwierigkeiten bei der Interpretation experimenteller Spektren, insbesondere von selbst-aggregierten Oligomeren, deren Größe unbekannt ist. Es ist daher notwendig, entweder die elektronische Kopplung oder die Anzahl der Monomere in einem Aggregat durch andere experimentelle Methoden unabhängig zu bestimmen. Ist die Aggregatgröße jedoch bekannt, können die Absorptionsspektren sehr wohl zur Bestimmung anderer Eigenschaften des Systems herangezogen werden. Dies wird durch die Untersuchung der Spektren kovalent gebundener zyklischer Aggregate aus drei und vier cis-Indolenin-Squarain-Molekülen als Beispiel für Systeme mit bekannter Größe dargestellt. Das zweite Hauptthema der Arbeit ist die Populationsdynamik in angeregten Zuständen molekularer Aggregate. Dazu werden numerische Rechnungen an Dimeren, Pentameren und Nonameren durchgeführt. Eine Asymmetrie, sei es im System selbst oder am Wellenpaket, das durch die Anregung entsteht, kann dazu führen, dass ein einzelnes Monomer dauerhaft bevorzugt populiert ist. Wenn durch eine externe Störung die Energie des angeregten Zustands bestimmter Monomere für eine gewisse Zeit erhöht ist, kommt es zu einer Lokalisation der Population in diesem energetisch höheren Zustand. In einem System mit weiteren internen Freiheitsgraden wird die Population auf benachbarte Monomere übertragen, wenn der Betrag der Energieverschiebung des gestörten Zustands mit dem Abstand der Schwingungsniveaus zusammenfällt. Der anfängliche Lokalisierungseffekt ist darüber hinaus zustandsspezifisch: Er wird durch die Überlappintegrale der Schwingungskomponenten der Wellenfunktion in den diabatischen angeregten elektronischen Zuständen bestimmt. Durch die Kombination von zwei Laserpulsen kann auch ein Wellenpaket in den angeregten Zuständen erzeugt werden, dessen Symmetrieachsen nicht mit denen der Potentialflächen des Systems zusammenfallen. Dadurch, dass hier die Asymmetrie schon im Wellenpaket vorliegt, kann es auch ohne äußere Störung zu einer Lokalisation der Population auf einem Monomer kommen. N2 - This work studies the spectral signatures of molecular aggregates as well as their excited-state wave-packet and population dynamics under the influence of external perturbations and photo-induced asymmetry. Quantum dynamical numerical calculations employing the Multi-Configuration Time-Dependent Hartee method are performed in order to characterize the aforementioned processes. Concentrating on model calculations, the results of this work can qualitatively be transferred to a variety of different systems. First, linear UV/Vis- absorption and emission spectra of aggregates are investigated. It becomes apparent that the number of quantities which determine an absorption spectrum -- such as the number of chromophores, their geometrical arrangement and the electronic coupling between them -- is too large to uniquely determine their numerical values from the specta. Especially, the effects of the aggregate size and the coupling strength can influence each other in a way such that nearly identical spectra are obtained for vastly different systems. This leads to difficulties in the interpretation of experimental spectra, in particular when investigating self-assembled oligomers whose size is unknown. It is thus necessary to determine either the number of monomers within the Aggregate or their electronic coupling independently via other experimental techniques. If the aggregate size is, however, known, absorption spectra provide a valuable tool for determining other properties of the system under investigation. This is shown by investigating the spectra of covalently linked aggregates comprised of three or four cis-Indolenine Squaraine dye molecules as an example for systems of known size. The second main topic of the thesis is the excited-state population dynamics of molecular aggregates. Here, numerical calculations for dimer, pentamer and nonamer systems are performed. It is shown that any asymmetry, originating from the system itself or from the photo-excited wave-packet, leads to a quasi-permanent enhancement of the population of a single monomer unit. When the energy of the excited states of certain monomers is increased by an external perturbation, the excited-state population is, after a very short time, localized in the state with higher energy. In a system that features additional internal degrees of freedom, the population is transferred to neighboring Monomers if the energy shift of the perturbed state is in resonance with the spacing of the vibrational levels. In addition, the inital localization effect is state-specific as it is determined by the overlap integral of the vibrational wave-function components in the diabatic electronic states. By combining two laser pulses, it is possible to generate an excited-state wave-packet whose axes of symmetry do not coincide with those of the potential energy surfaces of the system. Since, here, the asymmetry is already contained in the wave-packet, localization of the population on a single monomer is possible even without an external perturbation. KW - Kurzzeitphysik KW - Wellenpaket KW - Molekularbewegung KW - Physikalische Chemie KW - Quantendynamik KW - quantum dynamics Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139413 ER - TY - THES A1 - Hader, Kilian T1 - Lokalisierungsdynamik unter Berücksichtigung von Molekül-Feld-Wechselwirkung, Kern-Elektron-Kopplung und Exziton-Exziton-Annihilierung T1 - Localization dynamics considering molecule-field interaction, nuclear-electron coupling and exciton-exciton annihilation N2 - Diese Arbeit befasst sich mit verschiedenen Aspekten der Dynamik von Kernen, Elektronen und gekoppelten Kern-Elektron-Systemen, wobei je nach System unterschiedliche Herangehensweisen gewählt wurden. Zentrale Punkte sind bei allen drei Kapiteln einerseits die Lokalisierung von Teilchen und Energie und andererseits eine hohe Sensitivität in Bezug auf die Wahl der Anfangsbedingungen. Im ersten Teil wurden von der Carrier-Envelope-Phase (CEP) abhängende, laser-induzierte Lokalisierungen betrachtet. Das zentrale Element ist dabei das entwickelte Doppelpulsschema, mit welchem eine CEP-Abhängigkeit in beobachtbaren Größen erzeugt wird. Als Beispielsysteme wurden die Fragmentation im D₂⁺-Modellsystem und eine Isomerisierung im Doppelminimumpotential (DMP) untersucht. Als Observable wird die Asymmetrie betrachtet Im DMP kann die Asymmetrie mit dem Entantiomeren/Isomerenüberschuss gleich gesetzt werden kann und im D₂⁺-Modellsystem mit der Lokalisierung des Elektrons auf einem der beiden dissoziierenden Kerne. Eine Phasenabhängigkeit der Asymmetrien besteht nur für die CEP des zweiten Pulses φ₂, für welchen keine Begrenzungen für die Anzahl an Laserzyklen auftreten. Im DMP wurde die CEP-Abhängigkeit der Asymmetrien auch bei unterschiedlichen Startkonfigurationen untersucht. Für alle untersuchten Startkonfigurationen konnte ein Laserparametersatz gefunden werden, der für zumindest eine der beiden Asymmetrien eine CEP-Abhängigkeit liefert. Aufgrund der aufgehobenen energetischen Entartung der Paare gerader und ungerader Symmetrie ist die resultierende Lokalisierung zeitabhängig. Zur Messung der vorhergesagten Dynamiken ist z.B. die Aufnahme eines Photoelektronen-Spektrums denkbar. In nächsten Kapitel wurden unterschiedliche Dynamiken innerhalb eines 4d Kern-Elektron-Modells in der Nähe einer konischen Durchschneidung (CI) zweier Potentiale betrachtet. Hierbei ist hervorzuheben, dass eine solche gleichzeitige Untersuchung von Kern- und Elektron-Dynamik in Systemen mit CIs in der Literatur, nach Wissen des Autors, bisher nicht veröffentlicht ist. Das 4d-Potential wurde mit Hilfe des sogenannten Potfit-Algorithmus gefittet. Dieser Fit wurde anschließend verwendet, um die Dynamik des gekoppelten Systems mit Hilfe der ”Multi-Configuration Time-Dependent Hartree”(MCTDH)-Methode zu berechnen. Aus der Analyse der gekoppelten Kern-Elektron-Wellenfunktion ergaben sich zwei grundlegend unterschiedliche Klassen von Dynamiken: • Diabatisch: Kern- und Elektrondynamik sind nahezu entkoppelt. Der Kern bewegt sich und das Elektron bleibt statisch. • Adiabatisch: Kern- und Elektrondynamik sind stark gekoppelt. Die Kerndynamik findet auf Kreisbahnen statt. Mit der Rotation der Kerndichte um den Winkel φ geht eine Rotation der Elektron-Dichte einher. Die diabatische Bewegung entspricht der Dynamik durch die konische Durchschneidung und die adiabatische Bewegung der Dynamik auf der unteren Potentialfläche. Welche der beiden Dynamiken stattfindet, wird durch die Wahl der Anfangsbedingung bestimmt. Der wesentliche Unterschied zwischen den beiden Startzuständen ist dabei die Lage des Knotens im elektronischen Anteil der Wellenfunktion. In den diabatischen Bewegungen bleibt z.B. der pₓ -artige Charakter der elektronischen Wellenfunktion konstant, wohingegen sich bei der adiabatischen Dynamik der Charakter mit der Kernbewegung ändert. Die Zeitersparnis durch die Verwendung des MCTDH-Ansatzes im Vergleich zur Split-Operator-Methode liegt etwa bei einem Faktor 5. Das letzte Kapitel widmet sich der mikroskopischen Beschreibung von Exziton-Exziton- Annihilierung (EEA). Dabei werden numerische Lösungen der aus einem mikro- skopischen Modell hergeleiteten Ratengleichungen mit Messungen ( transienter Absorption) verglichen. Es wurden zwei Systeme untersucht: ein Squarain-basiertes Heteropolymer (SQA-SQB)ₙ und ein [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenvinylen]-Polymer, auch bekannt als MEH-PPV. In beiden Fällen gelang die systematische Parameterbestimmung mit Hilfe einer Aufteilung in lokalisierte Subsysteme. Diese Subsysteme werden einzeln gewichtet und anschließend aufsummiert, wobei die Gewichte optimiert werden können. Aus den so erhaltenen Parametern ergibt sich für beide Systeme ein ähnliches Bild: • Durch ultraschnelle Lokalisierung der Anregung im fs-Bereich auf kleinere Aggregateinheiten bilden sich voneinander getrennte Subsysteme. • Die in den Subsystemen lokalisierten Exzitonen können sich nur innerhalb dieser Bereiche frei bewegen. Es ist ausreichend, direkt benachbarte Mono-, Bi-, Tri- und Tetra-Exzitonen in bis zu zwei Dimensionen zu berücksichtigen. • Auf einer fs-Zeitskala annihilieren direkt benachbarte Exzitonen. • Im MEH-PPV ergibt sich der Signalzerfall im fs-Bereich als Mittelwert aus einer schnellen (zwischen Ketten) und einer langsamen (innerhalb von Ketten) Annihilierung. • Im ps- bis ns-Bereich wird sowohl durch Diffusion vermittelte Annihilierung, also auch der Zerfall der ersten angeregten Zustände bedeutsam. N2 - In the present work the dynamics of nuclei, electrons, and coupled nuclei-electron systems are examined in different ways. Items that are central in all three chapters are, on the one hand localization of particles and energy and, on the other, a high sensitivity to the choice of initial condition. In the first chapter carrier-envelope-phase (CEP) dependent, laser induced localization is examined. The main element of the considerations is a double pulse scheme, which creates a CEP-dependence in the monitored observables. As example systems the fragmentation of a D₂⁺-model and the isomerization in a double well potential (DWP) are investigated. As an observable the asymmetry is chosen. In the DWP this entity can be related to enantiomeric or isomeric excess and in the D₂⁺-model it describes the localization of the electron on a fragment. The phase dependent part of the asymmetries only relies on the CEP φ₂ of the second pulse which does not have any restrictions on the amount of laser cycles. In the DWP a CEP-dependence of the asymmetries could be examined starting from different initial configurations. For all different initial conditions a set of laser parameters could be found which produces at least one CEP-dependent asymmetry. Due to the removed degeneracy between states of even and odd parity, the resulting localization in the left or right potential well is time-dependent. - fied such that the first pulse does not populate all states equally. A possible way to test the predicted behavior experimentally is the measurement of photo-electron spectra. In the next chapter coupled nucleus-electron-dynamics in the vicinity of a conical intersections (CI) of two potentials are investigated in a 4-d model system.Such examinations of coupled nucleus-electron-dynamics on equal footing in systems containing CIs is, to the author’s knowledge, not published in literature. The 4-d potential has been fitted by use of the so-called Potfit-algorithm which subsequently could be used to calculate the dynamics of the coupled system in the ”Multi-Configuration Time-Dependent Hartree”(MCTDH)-framework. The analysis of the coupled nucleus-electron-wavefunction yielded two fundamentally different classes of dynamics: • Diabatic: Nucleus- and electron dynamics are nearly uncoupled. The nucleus moves while the electron remains static. • Adiabatic: Nucleus- and electron dynamics are strongly coupled. The dynamic of the nucleus takes place on orbits. The rotation of the nuclear density by the angle φ is accompanied by a rotation of the electron-density at the same angle. The diabatic dynamics are present if the wave packet is passing through the conical intersection and the adiabatic dynamics can be attributed to a wave packet moving on the lower potential surface. Which of the two classes of dynamics takes place can be controlled by choice of the initial wavefunction. The most significant difference between the two initial wavefunctions is the plane in which the node of the electronic wavefunction is located. In case of a diabatic motion the pₓ -like character of the wavefunctions remains constant, while in case of a adiabatic motion the character changes with the motion of the nucleus.The time saving by usage of the MCTDH-method in comparison to the Split-Operator-method is about a factor of 5. The last chapter is dedicated to the microscopic description of exciton-exciton-annihilation (EEA). The numerical solution of the rate equations which are derived starting from a microscopic Hamiltonian, are compared with measurements. The experimental data are time-dependent traces of transient absorption measurements at different laser fluences which were available for two different systems:a squaraine-based copolymer (SQA-SQB)ₙ and a [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] polymer also know as MEH-PPV. In both cases a systematic parameter determination could be achieved by introduction of localized subsystems. These subsystems are weighted independently and are summed up whereby the weighs can be optimized. The resulting interpretation of the obtained parameters is similar for both systems: • Ultrafast localization of the excitation energy takes place in the fs-regime which leads to excitons residing on smaller subsystems. • Excitons in these subsystems can only move inside of these domains. A re- construction of experimental data is feasible by inclusion of mono-, bi-, tri- and tetra-excitons in up to two dimensions. • In the fs-regime neighbouring excitons annihilate • In the MEH-PPV polymer the signal decay in the fs-regime can be described as the average of a fast annihilation (between chains) and a slow annihilation (inside chains). •On a longer time-scale (ps to ns) diffusion-meditated annihilation and decay of the first excited states take place KW - Quantenmechanik KW - Quantenchemie KW - Laserstrahlung KW - Nichtadiabatischer Prozess KW - Exziton KW - multicycle CEP control KW - exciton exciton annihilation KW - exact conical intersection dynamics KW - coupled nuclear-electron MCTDH KW - quantum dynamics KW - Quantentheoretische Chemie Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146735 ER - TY - THES A1 - Gräfe, Stefanie T1 - Laser-control of molecular dynamics T1 - Lasergesteuerte Kontrolle molekularer Dynamik N2 - In this work a new algorithm to determine quantum control fields from the instantaneous response of systems has been developed. The derived fields allow to establish a direct connection between the applied perturbation and the molecular dynamics. The principle is most easily illustrated in regarding a classical forced oscillator. A particle moving inside the respective potential is accelerated if an external field is applied acting in the same direction as its momentum (heating). In contrary, a deceleration is achieved by a field acting in the opposite direction as the momentum (cooling). Furthermore, when the particle reaches a classical turning point and then changes its direction, the sign of the field has to be changed to further drive the system in the desired way. The frequency of the field therefore is in resonance with the oscillator. This intuitively clear picture of a driven classical oscillator can be used for directing (or controlling) quantum mechanical wave packet motion. The efficiency of the instantaneous dynamics algorithm was demonstrated in treating various model problems, the population transfer in double well potentials, excitation and dissociation of selective modes, and the population transfer between electronic states. Although it was not tried to optimize the fields to gain higher yields, the control was found to be very efficient. Driving population transfer in a double well potential could be shown to take place with nearly 100% efficiency. It was shown that selective dissociation within the electronic ground state of HOD can be performed by either maximizing a selected coordinate's differential momentum change or the energy absorption. Concerning the population transfer into excited electronic states, a direct comparison with common control algorithms as optimal control theory and genetic algorithms was accomplished using a one-dimensional representation of methyl iodide. The fields derived from the various control theories were effective in transferring population into the chosen target state but the underlying physical background of the derived optimal fields was not obvious to explain. The instantaneous dynamics algorithm allowed to establish a direct relation between the derived fields and the underlying molecular dynamics. Bound-to-bound transitions could be handled more effectively. This was demonstrated on the sodium dimer in a representation of 3 electronic states being initially in its vibronic ground state. The objective was to transfer population into a predefined excited state. Choosing the first or the second state as a target, the control fields exhibited quite different features. The pulse-structure is related to the excited state wave packet, moving in, and out of the Franck-Condon region. Changing the control objective, the derived control field performed pure electronic transitions on a fast time-scale via a two-step transition. Futhermore, orientational effects have been investigated. The overall-efficiency of the population transfer for differently oriented molecules was about 70 % or more if applying a control field derived for a 45° orientation. Spectroscopic methods to gain information about the outcome of the control process have been investigated. It was shown that pump/probe femtosecond ionization spectroscopy is suited to monitor time-dependent molecular probability distributions. In particular, time-dependent photoelectron spectra are able to monitor the population in the various electronic states. In the last chapter a different possibility of controlling molecules was regarded by investigating molecular iodine with a setup similar to the STIRAP (“Stimulated Raman Adiabatic passage”) scenario. The possibility to extend this technique to a fs-time scale was examined in theory as well as in experiments, the latter being performed by Dr. Torsten Siebert in the Kiefer group, University of Würzburg. It was shown that off-resonant excitation with implementation of the pulses with a higher intensity of the Stokes pulse as compared to the pump pulse - describing a so-called f-STIRAP like configuration - was shown to effectively transfer population into excited ground-state vibrational levels. This was theoretically underlined by comparing the numerically exact coupling case with the adiabatic picture. The process was described to run in the vicinity of adibaticity. A new model explaining the process by the system's vector rotating around the dressed state vector will be adopted in future calculations. Altogether, a new promising algorithm to control dynamical processes based on the instantaneous response has been developed. Because the derived control fields have been shown to be very efficient in selectively influencing molecules, it is to be expected that farther reaching applications can be realized in future investigations. N2 - In dieser Arbeit wurde ein neuer Algorithmus zur Bestimmung von Kontrollfeldern aus der instantanen Respons von Systemen auf die Wirkung von Laserfeldern entwickelt. Die damit berechneten Felder ermöglichen es, eine Verbindung zwischen der Störung durch das Laserfeld und der molekularen Dynamik herzustellen. Das Prinzip lässt sich an einem klassischen Oszillator veranschaulichen: Ein sich innerhalb dieses Oszillatorpotenzials bewegendes Teilchen wird durch ein externes Feld beschleunigt, wenn dieses und der Impuls des Teilchens in die gleiche Richtung weisen. Ein Abbremsen des Teilchens wird durch ein Feld erzielt, welches dem Impuls des Teilchens entgegen gerichtet ist. Wenn das Teilchen in dem Oszillator einen Umkehrpunkt erreicht und dort seine Richtung ändert, wird das Vorzeichen des Feldes an die neue Richtung angepasst: Die Frequenz des Feldes befindet sich in Resonanz mit der Oszillatorfreuqenz. Dieses klassische Bild der erzwungenen Schwingung eines Oszillators kann für die Kontrolle quantenmechanischer Wellenpaketbewegungen angewendet werden. Die Effizienz des Algorithmus' wurde an verschiedenen Problemen, wie dem Populationstransfer (PT) in Doppelminimum-Potenzialen, Anregung und Dissoziation selektiver Moden und den PT in unterschiedliche el. Zuständen aufgezeigt. Obwohl keine Optimierung der Felder bezüglich höherer Ausbeuten durchgeführt wurde, konnte eine hohe Effizienz der Prozesse nachgewiesen werden. Ein PT in Doppelminimum-Potentialen wurde nahezu vollständig erreicht. Selektive Dissoziation innerhalb des el. Grundzustandes des HOD-Moleküls wurde unter Verwendung zweier unterschiedlicher Methoden, der Maximierung der zeitlichen Änderung des Impulses oder der Energieabsorption einer Koordinate, erzielt. Bezüglich des PT in el. angeregte Zustände wurden bekannte Kontrollalgorithmen wie die Theorie der optimalen Kontrolle und genetischer Algorithmen mit dem in dieser Arbeit entwickelten Prinzip der instantanen Respons anhand einer 1D Darstellung des Methyliodids verglichen. Die aus den verschiedenen Theorien konstruierten Felder erzielten einen effektiven PT in den zuvor definierten Zielzustand, jedoch ist der dem zu Grunde liegende, physikalische Hintergrund nicht einfach zu beschreiben. Mit Hilfe des Instantanen-Respons-Algorithmus' konnte eine direkte Relation zwischen den Feldern und der molekularen Dynamik hergestellt werden. Anhand des Na2 in einer Darstellung von 3 elektronischen Zuständen sollte nur ein Zustand selektiv angeregt werden. Je nach Wahl des Zielzustandes zeigten sich deutliche Unterschiede. Selektive Anregung des 1. Zustandes erzeugte ein Feld bestehend aus einer Pulsfolge, die durch ein Wellenpaket im angeregten Zustand, welches sich in und aus dem Franck-Condon Fenster heraus bewegt, erklärt werden konnte. Anregung des 2. Zustandes führte zu einem Feld, welches nicht auf Vibration, sondern rein elektronischer Anregung in einem 2-Stufen-Prozess beruht. Bei der Betrachtung von Orientierungseffekten konnte gezeigt werden, dass PT für alle Orientierungen mit einem Feld, welches aus einer mittleren Orientierung bestimmt wurde, effizient ist. Untersuchungen spektroskopischer Methoden, um Informationen über die Effizienz von Kontrollprozessen zu liefern, zeigten, dass Pump-Probe Ionisationsspektroskopie im Femtosekundenbereich (fs) dazu sehr gut dazu geeignet ist. Im Speziellen konnte mit zeitabh. Photoelektronenspektren die Populationen in den elektronischen Zuständen nach Anlegen des jeweiligen Feldes „beobachtet“ werden. Im letzten Kapitel wurde eine andere Methode der Kontrolle von Molekülen in Anlehnung an einen STIRAP ("Stimulated Raman Adiabatic Passage“) Prozess am Beispiel molekularen Iods vorgestellt. Dabei wurde die Möglichkeit, diese Technik auf die fs-Zeitskala auszudehnen,in Theorie und Experiment untersucht, wobei die Messungen von Dr. Torsten Siebert (Universität Würzburg, Arbeitskreis Prof. Kiefer) durchgeführt worden sind. Nicht-resonante Anregung, mit einer Abfolge der Pulse, in der der Stokes-Puls mit der höheren Intensität im Vergleich zum Pump-Puls in einer f-STIRAP-artigen Anordnung dem Pump-Puls vorausgeht, führte zu einem effizienten PT in einen schwingungsangeregten Zustand im el. Grundzustand. Dies konnte durch einen Vergleich des numerisch exakten Falls mit einer adiabatischen Behandlung theoretisch untermauert werden. Die zu Grunde liegenden Prozesse sind näherungsweise durch adiabatisches Verhalten charakterisiert. Dazu wird gerade ein neues Modell entwickelt, welches den Prozess mit einem um einen dressed-state rotierenden Vektor im Hilbertraum erklärt. Zusammenfassend wurde in dieser Arbeit ein Algorithmus zur Kontrolle von Moleküldynamik entwickelt, der auf der instantanen Antwort eines Systems bei Wechselwirkung mit einem elektrischen Feld beruht. Die daraus berechneten Kontrollfelder sind sehr effizient bezüglich einer selektiven Kontrolle von Molekülen und versprechen noch viele zukünftige Anwendungsmöglichkeiten. KW - Laserstrahlung KW - Molekulardynamik KW - Mehrphotonenprozess KW - Quantenmechanik KW - Quantendynamik KW - Kontrolltheorie KW - STIRAP KW - geformte Laserfelder KW - Multi-Photonen Prozesse KW - quantum dynamics KW - control theory KW - STIRAP KW - pulse shaping KW - multi-photon processes Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13388 ER - TY - THES A1 - Schubert, Alexander T1 - Kohärente und dissipative Wellenpaketdynamik und zeitaufgelöste Spektroskopie: Von zweiatomigen Molekülen zu molekularen Aggregaten T1 - Coherent and dissipative wave-packet dynamics and time-resolved spectroscopy: From diatomic molecules to molecular aggregates N2 - Unter dem Gesichtspunkt kohärenter Wellenpaketdynamik werden in dieser Arbeit zwei Themenfelder untersucht: Zum einen die Auswirkungen von Kernfreiheitsgraden auf die zweidimensionale vibronische Spektroskopie (2D-Spektroskopie) und zum anderen photoinduzierte Energieverlustmechanismen in organischen Halbleitern. Im ersten Abschnitt wird am numerischen Beispiel zweiatomiger Moleküle gezeigt, dass sich die Anharmonizität der Wellenpaketbewegung durch Variation der Verzögerungszeit der Femtosekundenpulse in der komplexwertigen Spektralfunktion, die aus der störungstheoretischen Berechnung der Polarisationsfunktion hervorgeht, widerspiegelt. Die zeitliche Entwicklung besetzter Vibrationszustände zeigt sich in der Struktur des Signals anhand sogenannter Quantenphasen. Durch Variation der Pulsparameter und -reihenfolge kann dabei die Quantendynamik in unterschiedlichen elektronischen Zuständen charakterisiert werden. Im zweiten Teil der Arbeit wird für molekulare Aggregate (3,4,9,10-Perylentetracarbonsäurediimid und 3,4,9,10-Perylentetracarbonsäuredianhydrid) ein zeitaufgelöstes, atomistisches Bild intra- und intermolekularer Strukturverzerrungen vorgestellt. Letztere induzieren eine ultraschnelle Depopulation der durch Photoabsorption angeregten elektronischen Zustände, was mit einer deutlichen Abnahme der Anregungsenergie einhergeht. N2 - In the present work two topics were examined within the framework of coherent wave-packet dynamics: First, the appearance of fingerprints of nuclear degrees-of-freedom in two-dimensional vibronic spectra (2D spectra), and second, photoinduced energy quenching processes in organic semi-conductors. Using the numerical example of diatomic molecules, it is shown in the first part that a variation of the delay-time between femtosecond laser pulses reveals the anharmonicity of the wave packet motion by influencing the complex-valued spectral function, which stems from a calculation of the perturbative polarization function. The time-evolution of vibrational states is monitored in the signal structure by so-called quantum phases. Different electronic states are accessible through variation of the parameters and the order of involved laser pulses. In the second part, a time-resolved atomistic picture of intra- and intermolecular structural deformations in molecular aggregates (3,4,9,10-perylene tetracarboxylic acid bisimide and 3,4,9,10-perylene tetracarboxylic acid dianhydride) is presented. The latter induce an ultrafast depopulation of the photoexcited electronic states, which goes in hand with a considerable loss of excitation energy. KW - Kurzzeitphysik KW - Physikalische Chemie KW - Molekularbewegung KW - Wellenpaket KW - Quantendynamik KW - Theoretische Physik KW - Quantisierung KW - Physikalische Theorie KW - Physik KW - Computerphysik KW - quantum dynamics Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74258 ER - TY - THES A1 - Falge, Mirjam T1 - Dynamik gekoppelter Elektronen-Kern-Systeme in Laserfeldern T1 - Dynamics of Coupled Electron-Nuclei-Systems in Laser Fields N2 - Die vorliegende Arbeit beschäftigt sich mit der theoretischen Untersuchung zweier Themenkomplexe: der Erzeugung Hoher Harmonischer in Molekülen und dem Einfluss von gekoppelter Elektronen-Kern-Dynamik auf Ultrakurzpuls-Ionisationsprozesse und Quantenkontrolle. Während bei der Untersuchung der Hohen Harmonischen die Auswirkungen der Kernbewegung auf die Spektren im Mittelpunkt des Interesses stehen, wird bei der Analyse der gekoppelter Elektronen-Kern-Dynamik das Hauptaugenmerk auf die nicht-adiabatischen Effekte gerichtet, die auftreten, wenn Kern- und Elektronenbewegung sich nicht, wie es im Rahmen der Born-Oppenheimer-Näherung in der Quantenchemie häufig angenommen wird, voneinander trennen lassen. N2 - This work aims at the theoretical analysis of high harmonic generation in molecules and the influence of coupled electron and nuclear dynamics on ultra-short pulse ionization processes. KW - Nichtadiabatischer Prozess KW - Laserstrahlung KW - Quantenmechanik KW - Molekulardynamik KW - Quantendynamik KW - nicht-adiabatische Effekte KW - Hohe Harmonische KW - Photoelektronenspektroskopie KW - quantum dynamics KW - nonadiabatic effects KW - high harmonic generation KW - photoelectron spectroscopy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72889 ER - TY - THES A1 - Erdmann, Marco T1 - Coupled electron and nuclear dynamics in model systems T1 - Gekoppelte Elektronen- und Kerndynamik in Modellsystemen N2 - Subject of this work was to investigate the influence of nonadiabatic coupling on the dynamical changes of electron and nuclear density. The properties of electron density have neither been discussed in the stationary case, nor for excited electronic states or for a coupled electronic and nuclear motion. In order to remove these restrictions one must describe the quantum mechanical motion of all particles in a system at the same level. This is only possible for very small systems. A model system developed by Shin and Metiu [1, 2] contains all necessary physical ingredients to describe a combined electronic and nuclear motion. It consists of a single nuclear and electronic degree of freedom and the particle interaction is parameterized in such a way as to allow for a facile switching between and adiabatic (Born-Oppenheimer type) and a strongly coupled dynamics. The first part of the work determined the “static” properties of the model system: The calculation of electronic eigenfunctions, adiabatic potential curves, kinetic coupling elements and transition dipole moments allowed for a prediction of the coupled dynamics. The potentials obtained from different parameterization showed two distinct cases: In the first case the ground and first excited state are separated by a large energy gap which is the typical Born-Oppenheimer case; the second one exhibits an avoided crossing which results in a breakdown of the adiabatic approximation. Due to the electronic properties of the system, the quantum dynamics in the two distinct situations is very different. This was illustrated by calculating nuclear and electron densities as a function of time. In the Born-Oppenheimer case, the electron density followed the vibrational motion of the nucleus. This was demonstrated in two examples. In the strongly coupled case the wave packet did not exhibit features caused by nonadiabatic coupling. However, projections of the wave function onto the electronic states revealed the usual picture obtained from solutions of the nuclear Schrödinger equation involving coupled electronic states. In that case the nuclear motion triggered charge transfer via nonadiabatic coupling. The second part of the work demonstrated that the model system can easily be modified to yield binding situations often found in diatomic molecules. The different situations can be characterized in terms of bound and dissociative adiabatic potential curves. The investigation focussed on the case of an electronic predissociation, where the ground state is dissociative in the asymptotic limit of large internuclear distances. Within our model system we were able to demonstrate how the character of the electron density changes during the fragmentation process. In the third part we investigated the influence of external fields on the correlated dynamics of electron and nucleus. Employing adiabatic potential curves, the structure of absorption spectra can be understood within the weak-field limit. In the above described Born-Oppenheimer case the adiabatically calculated spectrum was in very good agreement with the exact one, whereas in the strongly coupled case the obtained spectrum was not able to resemble the exact one. Regarding the dynamics during a laser excitation process the time-dependent electron and nuclear densities nicely illustrated the famous Franck-Condon principle. The interaction with strong laser pulses lead to an excitation of many bound electronic and vibrational states. The electron density reflected the classical-like quiver motion of the electron induced by the fast variations of the electric field. The nucleus did not follow these fast oscillations because of its much larger mass. The last part of the work extended the original model system by including an additional electron. As a consequence of the Pauli principle, the spatial electronic wave function has to be either symmetric or anti-symmetric with respect to exchange of the two electrons. This corresponds to anti-parallel or parallel electron spins, respectively. The extended model already contains the physical properties of a many-electron system. Solving the time-dependent Schrödinger equation for a typical vibrational wave packet motion clearly indicated that the electron density is no longer suited to “localize” single electrons. We extended the definition of the electron localization function (ELF) to an exact, time-dependent wave function and demonstrated, how the ELF can be used to further characterize a coupled electron and nuclear motion. Finally, we gave an outlook of how to define electron localization in the case of anti-parallel electron spins. We derived a quantity similar to the ELF denoted “anti-parallel spin electron localization function” (ALF) and demonstrated that the ALF allows to follow time-dependent changes of the electron localization in a numerical example. [1] S. Shin, H. Metiu, J. Chem. Phys. 1995, 102, 9285. [2] S. Shin, H. Metiu, J. Phys. Chem. 1996, 100, 7867. N2 - Gegenstand dieser Arbeit war es, den Einfluss nichtadiabatischer Kopplung auf die dynamischen Änderungen von Elektronen- und Kerndichten zu untersuchen. Die Eigenschaften der Elektronendichte wurden bislang weder für den nicht-stationären Fall, noch für angeregte elektronische Zustände oder für eine gekoppelte Elektronen- und Kerndynamik diskutiert. Diese Einschränkungen lassen sich beseitigen, indem man die quantenmechanische Bewegung aller Teilchen eines Systems auf dem gleichen Niveau beschreibt. Dies ist nur für sehr kleine Systeme überhaupt möglich. Ein Modellsystem, das von Shin und Metiu [1, 2] entwickelt wurde, erfüllt alle notwendigen physikalischen Vorraussetzungen, um eine gekoppelte Elektronen- und Kernbewegung zu beschreiben. Das Modell enthält jeweils nur einen Freiheitsgrad für Kern und Elektron, und die Parametrisierung der Teilchenwechselwirkung ermöglicht den flexiblen Wechsel von adiabatischer (Born-Oppenheimer-Fall) zu stark gekoppelter Dynamik. Der erste Teil der Arbeit untersuchte die „statischen“ Eigenschaften des Modellsystems: Die Berechnung elektronischer Eigenfunktionen, adiabatischer Potentialkurven, kinetischer Kopplungselemente und Übergangsdipolmomente erlaubte gewisse Vorhersagen über die zu erwartende, gekoppelte Dynamik. Die Potentiale, die man für verschiedene Parametrisierung erhielt, zeigten zwei deutlich unterschiedliche Fälle: Im ersten Fall, einer gültigen Born-Oppenheimer-Näherung, sind der Grund- und erste angeregte Zustand durch eine große Energielücke voneinander getrennt. Der zweite Fall zeigt eine vermiedene Kreuzung, die zu einem Versagen der adiabatischen Näherung führt. Aufgrund der elektronischen Eigenschaften des Systems, unterscheidet sich die Quantendynamik in den beiden betrachteten Fällen grundlegend, wie durch die Berechnung zeitabhängiger Kern- und Elektronendichten veranschaulicht wurde. Im Born-Oppenheimer-Fall folgte die Änderung der Elektronendichte der Schwingungsbewegung des Kerns. Im Falle starker Kopplung zeigte das Wellenpaket keine Anzeichen einer nichtadiabatischen Kopplung. Die Projektionen der Wellenfunktion auf die elektronischen Zustände enthüllten jedoch das übliche Bild, das man aus der Lösung der Schrödingergleichung der Kerne für gekoppelte elektronische Zustände erhält. In diesem Fall verursachte die Kernbewegung einen Ladungstransfer aufgrund nichtadiabatischer Kopplung. Der zweite Teil der Arbeit zeigte, dass das Modellsystem leicht modifiziert werden kann, um in zweiatomigen Molekülen vorhandene Bindungssituationen zu simulieren. Die verschiedenen Fälle sind durch gebundene und dissoziative adiabatische Potentialkurven charakterisiert. Die Untersuchungen konzentrierten sich auf den Fall einer elektronischen Prädissoziation, d.h. der Grundzustand ist dissoziativ für große Kernabstände. Innerhalb unseres Modellsystems konnten wir zeigen, wie sich die Elektronendichte während des Fragmentierungsprozesses ändert. Im dritten Teil untersuchten wir den Einfluss externer elektrischer Felder auf die korrelierte Elektronen- und Kernbewegung. Mit Hilfe adiabatischer Potentiale kann die Struktur von Absorptionsspektren im Falle schwacher Felder verstanden werden. Für den oben beschriebenen Fall gültiger Born-Oppenheimer-Näherung, stimmte das adiabatisch berechnete Spektrum sehr gut mit dem exakten überein. Für den Fall starker nichtadiabatischer Kopplung zeigte das erhaltene Spektrum keine Übereinstimmung mit dem exakt berechneten. Die Berechnung zeitabhängiger Elektronen- und Kerndichten, während der Wechselwirkung mit einem Laserfeld, veranschaulichte deutlich das Franck-Condon-Prinzip. Die Wechselwirkung mit einem intensiven Laserpuls führte zur Anregung vieler gebundener elektronischer und Schwingungszustände. Die Elektronendichte zeigte die einer klassischen Bewegung sehr ähnliche Zitterbewegung des Elektrons, die durch die schnellen Änderungen des elektrischen Feldes hervorgerufen wird. Der Kern folgte aufgrund seiner wesentlich höheren Masse diesen schnellen Oszillationen nicht. Der letzte Teil der Arbeit erweiterte das ursprüngliche Modell durch Hinzufügen eines weiteren Elektrons. Als Konsequenz des Pauli-Prinzips muss die Ortsraumwellenfunktion entweder symmetrisch oder antisymmetrisch bezüglich Austausches der beiden Elektronen sein. Dies entspricht antiparallelen, bzw. parallelen Elektronenspins. Das erweiterte Modell enthält bereits die physikalischen Eigenschaften eines Mehrelektronensystems. Das Lösen der Schrödingergleichung für eine Schwingungsbewegung des Kerns legte nahe, dass sich die Elektronendichte nicht eignet, die Lokalisierung der Elektronen zu charakterisieren. Wir erweiterten deshalb die Definition der Elektronenlokalisierungsfunktion (ELF) auf eine exakte, zeitabhängige Wellenfunktion und untersuchten, inwieweit sich die ELF eignet, eine gekoppelte Elektronen- und Kernbewegung genauer zu analysieren. Am Ende der Arbeit folgte ein Ausblick, wie Elektronenlokalisierung im Falle antiparalleler Elektronenspins definiert werden kann. Die von uns abgeleitete „Elektronenlokalisierungsfunktion für antiparallelen Spin“ (ALF) erlaubt es, die zeitabhängige Änderung der Elektronenlokalisierung zu beobachten, wie wir an einem numerischen Beispiel verdeutlichen konnten. [1] S. Shin, H. Metiu, J. Chem. Phys. 1995, 102, 9285. [2] S. Shin, H. Metiu, J. Phys. Chem. 1996, 100, 7867. KW - Nichtadiabatischer Prozess KW - Quantenelektrodynamik KW - Quantendynamik KW - nichtadiabatische Kopplung KW - exakte Wellenfunktion KW - Elektronenlokalisierung KW - quantum dynamics KW - nonadiabatic coupling KW - exact wave function KW - electron localization Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-9968 ER -