TY - JOUR A1 - Walter, Maggie C. A1 - Reilich, Peter A1 - Thiele, Simone A1 - Schessl, Joachim A1 - Schreiber, Herbert A1 - Reiners, Karlheinz A1 - Kress, Wolfram A1 - Müller-Reible, Clemens A1 - Vorgerd, Matthias A1 - Urban, Peter A1 - Schrank, Bertold A1 - Deschauer, Marcus A1 - Schlotter-Weigel, Beate A1 - Kohnen, Ralf A1 - Lochmüller, Hans T1 - Treatment of dysferlinopathy with deflazacort: a double-blind, placebo-controlled clinical trial JF - Orphanet Journal of Rare Diseases N2 - Background: Dysferlinopathies are autosomal recessive disorders caused by mutations in the dysferlin (DYSF) gene encoding the dysferlin protein. DYSF mutations lead to a wide range of muscular phenotypes, with the most prominent being Miyoshi myopathy (MM) and limb girdle muscular dystrophy type 2B (LGMD2B). Methods: We assessed the one-year-natural course of dysferlinopathy, and the safety and efficacy of deflazacort treatment in a double-blind, placebo-controlled cross-over trial. After one year of natural course without intervention, 25 patients with genetically defined dysferlinopathy were randomized to receive deflazacort and placebo for six months each (1 mg/kg/day in month one, 1 mg/kg every 2nd day during months two to six) in one of two treatment sequences. Results: During one year of natural course, muscle strength declined about 2% as measured by CIDD (Clinical Investigation of Duchenne Dystrophy) score, and 76 Newton as measured by hand-held dynamometry. Deflazacort did not improve muscle strength. In contrast, there is a trend of worsening muscle strength under deflazacort treatment, which recovers after discontinuation of the study drug. During deflazacort treatment, patients showed a broad spectrum of steroid side effects. Conclusion: Deflazacort is not an effective therapy for dysferlinopathies, and off-label use is not warranted. This is an important finding, since steroid treatment should not be administered in patients with dysferlinopathy, who may be often misdiagnosed as polymyositis. KW - Deflazacort KW - muscle strength KW - gridle muscular-dystrophy KW - Duchenne dystrphy KW - Miyoshi myopathy KW - mutation KW - prednisone KW - gene KW - 2B KW - children KW - design KW - steroids KW - therapy KW - dysferlinopathy KW - Limb girdle muscular dystrophy (LGMD) Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125663 SN - 1750-1172 VL - 8 IS - 26 ER - TY - JOUR A1 - Schreiber, Olivia A1 - Schneiderat, Peter A1 - Kress, Wolfram A1 - Rautenstrauss, Bernd A1 - Senderek, Jan A1 - Schoser, Bendikt A1 - Walter, Maggie C. T1 - Facioscapulohumeral muscular dystrophy and Charcot-Marie-Tooth neuropathy 1A-evidence for "double trouble" overlapping syndromes JF - BMC Medical Genetics N2 - Background: We report on a patient with genetically confirmed overlapping diagnoses of CMT1A and FSHD. This case adds to the increasing number of unique patients presenting with atypical phenotypes, particularly in FSHD. Even if a mutation in one disease gene has been found, further genetic testing might be warranted in cases with unusual clinical presentation. Case presentation: The reported 53 years old male patient suffered from walking difficulties and foot deformities first noticed at age 20. Later on, he developed scapuloperoneal and truncal muscle weakness, along with atrophy of the intrinsic hand and foot muscles, pes cavus, claw toes and a distal symmetric hypoesthesia. Motor nerve conduction velocities were reduced to 20 m/s in the upper extremities, and not educible in the lower extremities, sensory nerve conduction velocities were not attainable. Electromyography showed both, myopathic and neurogenic changes. A muscle biopsy taken from the tibialis anterior muscle showed a mild myopathy with some neurogenic findings and hypertrophic type 1 fibers. Whole-body muscle MRI revealed severe changes in the lower leg muscles, tibialis anterior and gastrocnemius muscles were highly replaced by fatty tissue. Additionally, fatty degeneration of shoulder girdle and straight back muscles, and atrophy of dorsal upper leg muscles were seen. Taken together, the presenting features suggested both, a neuropathy and a myopathy. Patient's family history suggested an autosomal dominant inheritance. Molecular testing revealed both, a hereditary motor and sensory neuropathy type 1A (HMSN1A, also called Charcot-Marie-Tooth neuropathy 1A, CMT1A) due to a PMP22 gene duplication and facioscapulohumeral muscular dystrophy (FSHD) due to a partial deletion of the D4Z4 locus (19 kb). Conclusion: Molecular testing in hereditary neuromuscular disorders has led to the identification of an increasing number of atypical phenotypes. Nevertheless, finding the right diagnosis is crucial for the patient in order to obtain adequate medical care and appropriate genetic counseling, especially in the background of arising curative therapies. KW - D4Z4 partial deletion KW - sensory neuropathy KW - hereditary motor KW - disease KW - phenotype KW - FSHD KW - myopathy KW - patient KW - duplication KW - diagnosis KW - facioscapulohumeral muscular dystrophy KW - Charcot-Marie-Tooth neuropathy 1A KW - hereditary motor and sensory neuropathy KW - double trouble KW - overlapping syndrome Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121963 SN - 1471-2350 VL - 14 IS - 92 ER - TY - JOUR A1 - Böhm, Johann A1 - Vasli, Nasim A1 - Maurer, Marie A1 - Cowling, Belinda A1 - Shelton, G. Diane A1 - Kress, Wolfram A1 - Toussaint, Anne A1 - Prokic, Ivana A1 - Schara, Ulrike A1 - Anderson, Thomas James A1 - Weis, Joachim A1 - Tiret, Laurent A1 - Laporte, Jocelyn T1 - Altered Splicing of the BIN1 Muscle-Specific Exon in Humans and Dogs with Highly Progressive Centronuclear Myopathy JF - PLOS Genetics N2 - Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation of BIN1 splicing partially accounts for the muscle defects in myotonic dystrophy (DM). However, the muscle-specific function of amphiphysin 2 and its pathogenicity in both muscle disorders are not well understood. In this study we identified and characterized the first mutation affecting the splicing of the muscle-specific BIN1 exon 11 in a consanguineous family with rapidly progressive and ultimately fatal centronuclear myopathy. In parallel, we discovered a mutation in the same BIN1 exon 11 acceptor splice site as the genetic cause of the canine Inherited Myopathy of Great Danes (IMGD). Analysis of RNA from patient muscle demonstrated complete skipping of exon 11 and BIN1 constructs without exon 11 were unable to promote membrane tubulation in differentiated myotubes. Comparative immunofluorescence and ultrastructural analyses of patient and canine biopsies revealed common structural defects, emphasizing the importance of amphiphysin 2 in membrane remodelling and maintenance of the skeletal muscle triad. Our data demonstrate that the alteration of the muscle-specific function of amphiphysin 2 is a common pathomechanism for centronuclear myopathy, myotonic dystrophy, and IMGD. The IMGD dog is the first faithful model for human BIN1-related CNM and represents a mammalian model available for preclinical trials of potential therapies. KW - linked myotubular myopathy KW - skeletal muscle KW - inherited myopathy KW - SH3 domain KW - amphiphysin-2 BIN1 KW - membrane curvature KW - tumor-suppressor KW - great dane KW - mutation KW - gene Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127590 SN - 1553-7404 VL - 9 IS - 6 ER -