TY - JOUR A1 - Hennings, Johannes M. A1 - Kohli, Martin A. A1 - Czamara, Darina A1 - Giese, Maria A1 - Eckert, Anne A1 - Wolf, Christiane A1 - Heck, Angela A1 - Domschke, Katharina A1 - Arolt, Volker A1 - Baune, Bernhard T. A1 - Horstmann, Sonja A1 - Brückl, Tanja A1 - Klengel, Torsten A1 - Menke, Andreas A1 - Müller-Myhsok, Bertram A1 - Ising, Marcus A1 - Uhr, Manfred A1 - Lucae, Susanne T1 - Possible Associations of NTRK2 Polymorphisms with Antidepressant Treatment Outcome: Findings from an Extended Tag SNP Approach JF - PLoS ONE N2 - Background: Data from clinical studies and results from animal models suggest an involvement of the neurotrophin system in the pathology of depression and antidepressant treatment response. Genetic variations within the genes coding for the brain-derived neurotrophic factor (BDNF) and its key receptor Trkb (NTRK2) may therefore influence the response to antidepressant treatment. Methods: We performed a single and multi-marker association study with antidepressant treatment outcome in 398 depressed Caucasian inpatients participating in the Munich Antidepressant Response Signature (MARS) project. Two Caucasian replication samples (N = 249 and N = 247) were investigated, resulting in a total number of 894 patients. 18 tagging SNPs in the BDNF gene region and 64 tagging SNPs in the NTRK2 gene region were genotyped in the discovery sample; 16 nominally associated SNPs were tested in two replication samples. Results: In the discovery analysis, 7 BDNF SNPs and 9 NTRK2 SNPs were nominally associated with treatment response. Three NTRK2 SNPs (rs10868223, rs1659412 and rs11140778) also showed associations in at least one replication sample and in the combined sample with the same direction of effects (\(P_{corr}\) = .018, \(P_{corr}\) = .015 and \(P_{corr}\) = .004, respectively). We observed an across-gene BDNF-NTRK2 SNP interaction for rs4923468 and rs1387926. No robust interaction of associated SNPs was found in an analysis of BDNF serum protein levels as a predictor for treatment outcome in a subset of 93 patients. Conclusions/Limitations: Although not all associations in the discovery analysis could be unambiguously replicated, the findings of the present study identified single nucleotide variations in the BDNF and NTRK2 genes that might be involved in antidepressant treatment outcome and that have not been previously reported in this context. These new variants need further validation in future association studies. KW - brain KW - bipolar disorder KW - mood disorder KW - treatment response KW - genome-wide association KW - major depressive disorder KW - neurotrophic factor gene KW - VAL66MET polymorphism KW - sequence variations KW - messenger RNA Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130924 VL - 8 IS - 6 ER - TY - JOUR A1 - Zannas, Anthony S. A1 - Arloth, Janine A1 - Carrillo-Roa, Tania A1 - Iurato, Stella A1 - Röh, Simone A1 - Ressler, Kerry J. A1 - Nemeroff, Charles B. A1 - Smith, Alicia K. A1 - Bradley, Bekh A1 - Heim, Christine A1 - Menke, Andreas A1 - Lange, Jennifer F. A1 - Brückl, Tanja A1 - Ising, Marcus A1 - Wray, Naomi R. A1 - Erhardt, Angelika A1 - Binder, Elisabeth B. A1 - Mehta, Divya T1 - Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling JF - Genome Biology N2 - Background Chronic psychological stress is associated with accelerated aging and increased risk for aging-related diseases, but the underlying molecular mechanisms are unclear. Results We examined the effect of lifetime stressors on a DNA methylation-based age predictor, epigenetic clock. After controlling for blood cell-type composition and lifestyle parameters, cumulative lifetime stress, but not childhood maltreatment or current stress alone, predicted accelerated epigenetic aging in an urban, African American cohort (n = 392). This effect was primarily driven by personal life stressors, was more pronounced with advancing age, and was blunted in individuals with higher childhood abuse exposure. Hypothesizing that these epigenetic effects could be mediated by glucocorticoid signaling, we found that a high number (n = 85) of epigenetic clock CpG sites were located within glucocorticoid response elements. We further examined the functional effects of glucocorticoids on epigenetic clock CpGs in an independent sample with genome-wide DNA methylation (n = 124) and gene expression data (n = 297) before and after exposure to the glucocorticoid receptor agonist dexamethasone. Dexamethasone induced dynamic changes in methylation in 31.2 % (110/353) of these CpGs and transcription in 81.7 % (139/170) of genes neighboring epigenetic clock CpGs. Disease enrichment analysis of these dexamethasone-regulated genes showed enriched association for aging-related diseases, including coronary artery disease, arteriosclerosis, and leukemias. Conclusions Cumulative lifetime stress may accelerate epigenetic aging, an effect that could be driven by glucocorticoid-induced epigenetic changes. These findings contribute to our understanding of mechanisms linking chronic stress with accelerated aging and heightened disease risk. KW - aging KW - DNA methylation KW - gene expression KW - glucocorticoids KW - psychological stress KW - aging-related disease KW - epigenetics Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149865 VL - 16 IS - 266 ER -