TY - JOUR A1 - Volkmann, Jens A1 - Albanese, Alberto A1 - Antonini, Angelo A1 - Chaudhuri, K. Ray A1 - Clarke, Karl E. A1 - de Bie, Rob M. A. A1 - Deuschl, Günther A1 - Eggert, Karla A1 - Houeto, Jean-Luc A1 - Kulisevsky, Jaime A1 - Nyholm, Dag A1 - Odin, Per A1 - Ostergaard, Karen A1 - Poewe, Werner A1 - Pollak, Pierre A1 - Rabey, Jose Martin A1 - Rascol, Olivier A1 - Ruzicka, Evzen A1 - Samuel, Michael A1 - Speelman, Hans A1 - Sydow, Olof A1 - Valldeoriola, Francesc A1 - van der Linden, Chris A1 - Oertel, Wolfgang T1 - Selecting deep brain stimulation or infusion therapies in advanced Parkinson’s disease: an evidence-based review JF - Journal of Neurology N2 - Motor complications in Parkinson’s disease (PD) result from the short half-life and irregular plasma fluctuations of oral levodopa. When strategies of providing more continuous dopaminergic stimulation by adjusting oral medication fail, patients may be candidates for one of three device-aided therapies: deep brain stimulation (DBS), continuous subcutaneous apomorphine infusion, or continuous duodenal/jejunal levodopa/carbidopa pump infusion (DLI). These therapies differ in their invasiveness, side-effect profile, and the need for nursing care. So far, very few comparative studies have evaluated the efficacy of the three device-aided therapies for specific motor problems in advanced PD. As a result, neurologists currently lack guidance as to which therapy could be most appropriate for a particular PD patient. A group of experts knowledgeable in all three therapies reviewed the currently available literature for each treatment and identified variables of clinical relevance for choosing one of the three options such as type of motor problems, age, and cognitive and psychiatric status. For each scenario, pragmatic and (if available) evidence-based recommendations are provided as to which patients could be candidates for either DBS, DLI, or subcutaneous apomorphine. KW - Parkinson’s disease KW - apomorphine KW - deep brain stimulation KW - duodenal levodopa infusion Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132373 VL - 260 ER - TY - JOUR A1 - Müller, Stefanie H. A1 - Girard, Simon L. A1 - Hopfner, Franziska A1 - Merner, Nancy D. A1 - Bourassa, Cynthia V. A1 - Lorenz, Delia A1 - Clark, Lorraine N. A1 - Tittmann, Lukas A1 - Soto-Ortolaza, Alexandra I. A1 - Klebe, Stephan A1 - Hallett, Mark A1 - Schneider, Susanne A. A1 - Hodgkinson, Colin A. A1 - Lieb, Wolfgang A1 - Wszolek, Zbigniew K. A1 - Pendziwiat, Manuela A1 - Lorenzo-Betancor, Oswaldo A1 - Poewe, Werner A1 - Ortega-Cubero, Sara A1 - Seppi, Klaus A1 - Rajput, Alex A1 - Hussl, Anna A1 - Rajput, Ali H. A1 - Berg, Daniela A1 - Dion, Patrick A. A1 - Wurster, Isabel A1 - Shulman, Joshua M. A1 - Srulijes, Karin A1 - Haubenberger, Dietrich A1 - Pastor, Pau A1 - Vilariño-Güell, Carles A1 - Postuma, Ronald B. A1 - Bernard, Geneviève A1 - Ladwig, Karl-Heinz A1 - Dupré, Nicolas A1 - Jankovic, Joseph A1 - Strauch, Konstantin A1 - Panisset, Michel A1 - Winkelmann, Juliane A1 - Testa, Claudia M. A1 - Reischl, Eva A1 - Zeuner, Kirsten E. A1 - Ross, Owen A. A1 - Arzberger, Thomas A1 - Chouinard, Sylvain A1 - Deuschl, Günther A1 - Louis, Elan D. A1 - Kuhlenbäumer, Gregor A1 - Rouleau, Guy A. T1 - Genome-wide association study in essential tremor identifies three new loci JF - Brain N2 - We conducted a genome-wide association study of essential tremor, a common movement disorder characterized mainly by a postural and kinetic tremor of the upper extremities. Twin and family history studies show a high heritability for essential tremor. The molecular genetic determinants of essential tremor are unknown. We included 2807 patients and 6441 controls of European descent in our two-stage genome-wide association study. The 59 most significantly disease-associated markers of the discovery stage were genotyped in the replication stage. After Bonferroni correction two markers, one (rs10937625) located in the serine/threonine kinase STK32B and one (rs17590046) in the transcriptional coactivator PPARGC1A were associated with essential tremor. Three markers (rs12764057, rs10822974, rs7903491) in the cell-adhesion molecule CTNNA3 were significant in the combined analysis of both stages. The expression of STK32B was increased in the cerebellar cortex of patients and expression quantitative trait loci database mining showed association between the protective minor allele of rs10937625 and reduced expression in cerebellar cortex. We found no expression differences related to disease status or marker genotype for the other two genes. Replication of two lead single nucleotide polymorphisms of previous small genome-wide association studies (rs3794087 in SLC1A2, rs9652490 in LINGO1) did not confirm the association with essential tremor. KW - quality-control KW - disease KW - tool KW - movement disorders KW - genome-wide association study KW - tremor KW - genetics KW - essential tremor Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186541 VL - 139 ER - TY - JOUR A1 - Pötter-Nerger, Monika A1 - Reese, Rene A1 - Steigerwald, Frank A1 - Heiden, Jan Arne A1 - Herzog, Jan A1 - Moll, Christian K. E. A1 - Hamel, Wolfgang A1 - Ramirez-Pasos, Uri A1 - Falk, Daniela A1 - Mehdorn, Maximilian A1 - Gerloff, Christian A1 - Deuschl, Günther A1 - Volkmann, Jens T1 - Movement-Related Activity of Human Subthalamic Neurons during a Reach-to-Grasp Task JF - Frontiers in Human Neuroscience N2 - The aim of the study was to record movement-related single unit activity (SUA) in the human subthalamic nucleus (STN) during a standardized motor task of the upper limb. We performed microrecordings from the motor region of the human STN and registered kinematic data in 12 patients with Parkinson’s disease (PD) undergoing deep brain stimulation surgery (seven women, mean age 62.0 ± 4.7 years) while they intraoperatively performed visually cued reach-to-grasp movements using a grip device. SUA was analyzed offline in relation to different aspects of the movement (attention, start of the movement, movement velocity, button press) in terms of firing frequency, firing pattern, and oscillation. During the reach-to-grasp movement, 75/114 isolated subthalamic neurons exhibited movement-related activity changes. The largest proportion of single units showed modulation of firing frequency during several phases of the reach and grasp (polymodal neurons, 45/114), particularly an increase of firing rate during the reaching phase of the movement, which often correlated with movement velocity. The firing pattern (bursting, irregular, or tonic) remained unchanged during movement compared to rest. Oscillatory single unit firing activity (predominantly in the theta and beta frequency) decreased with movement onset, irrespective of oscillation frequency. This study shows for the first time specific, task-related, SUA changes during the reach-to-grasp movement in humans. KW - subthalamic nucleus KW - deep brain stimulation KW - Parkinson’s disease KW - neurophysiology KW - beta oscillation KW - reach-to-grasp movement Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170361 VL - 11 IS - 436 ER - TY - JOUR A1 - Gonzalez‐Escamilla, Gabriel A1 - Muthuraman, Muthuraman A1 - Reich, Martin M. A1 - Koirala, Nabin A1 - Riedel, Christian A1 - Glaser, Martin A1 - Lange, Florian A1 - Deuschl, Günther A1 - Volkmann, Jens A1 - Groppa, Sergiu T1 - Cortical network fingerprints predict deep brain stimulation outcome in dystonia JF - Movement Disorders N2 - Background Deep brain stimulation (DBS) is an effective evidence‐based therapy for dystonia. However, no unequivocal predictors of therapy responses exist. We investigated whether patients optimally responding to DBS present distinct brain network organization and structural patterns. Methods From a German multicenter cohort of 82 dystonia patients with segmental and generalized dystonia who received DBS implantation in the globus pallidus internus, we classified patients based on the clinical response 3 years after DBS. Patients were assigned to the superior‐outcome group or moderate‐outcome group, depending on whether they had above or below 70% motor improvement, respectively. Fifty‐one patients met MRI‐quality and treatment response requirements (mean age, 51.3 ± 13.2 years; 25 female) and were included in further analysis. From preoperative MRI we assessed cortical thickness and structural covariance, which were then fed into network analysis using graph theory. We designed a support vector machine to classify subjects for the clinical response based on individual gray‐matter fingerprints. Results The moderate‐outcome group showed cortical atrophy mainly in the sensorimotor and visuomotor areas and disturbed network topology in these regions. The structural integrity of the cortical mantle explained about 45% of the DBS stimulation amplitude for optimal response in individual subjects. Classification analyses achieved up to 88% of accuracy using individual gray‐matter atrophy patterns to predict DBS outcomes. Conclusions The analysis of cortical integrity, informed by group‐level network properties, could be developed into independent predictors to identify dystonia patients who benefit from DBS. KW - brain networks KW - clinical outcome KW - deep brain stimulation KW - dystonia Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213532 VL - 34 IS - 10 SP - 1536 EP - 1545 ER -