TY - THES A1 - Krischke, Markus T1 - Oxidativer Stress in Pflanzen : Untersuchungen zum D1-Phytoprostan-Signalweg T1 - Oxidative stress in plants: Investigating the D1-phytoprostane signalling pathway N2 - Phytoprostane (PP) können nichtenzymatisch in vitro und in vivo durch freie Radikal-katalysierte Peroxidation von alpha-Linolensäure entstehen. In der vorliegenden Arbeit konnte gezeigt werden, dass über den D1-Phytoprostan-Weg zwei weitere Klassen von Phytoprostanen gebildet werden können, die D1-Phytoprostane (PPD1) und die Deoxy-J1-Phytoprostane (dPPJ1). PPD1 und dPPJ1 wurden erstmals durch Partialsynthese hergestellt. Zudem konnten diese Verbindungen durch Autoxidation von alpha-Linolensäure gewonnen werden. PPD1 und dPPJ1 wurden chromatographisch aufgetrennt und UV-spektroskopisch und massenspektrometrisch charakterisiert. Zum Nachweis von PPD1 und dPPJ1 in planta wurde eine neuartige Analysenmethode mittels Fluoreszenz-HPLC entwickelt. Mit dieser Methode konnten PPD1 und dPPJ1 in drei unterschiedlichen Pflanzenspezies nachgewiesen werden. Zudem wurde eine verstärkte Biosynthese von dPPJ1 in planta durch oxidativen Stress beobachtet, z.B. durch eine Belastung mit Schwermetallen oder einen kurzfristigen Kälteschock. Darüber hinaus konnte gezeigt werden, dass dPPJ1 sowohl in Pflanzen als auch in Tieren biologisch aktiv sind. N2 - Phytoprostanes (PP) are formed in vitro and in vivo by free radical-catalyzed peroxidation of linolenic acid. In this work it has been shown that two additional classes of phytoprostanes are formed via the D1-phytoprostane pathway, D1-phytoprostanes (PPD1) and deoxy-J1-phytoprostanes (dPPJ1). For the first time PPD1 and dPPJ1 were prepared by partial synthesis. Additionally, these compounds were also obtained by autoxidation of linolenic acid in vitro. PPD1 and dPPJ1 were separated by chromatographical methods and characterized by UV spectroscopy and mass spectrometry. A novel method for the quantitation of PPD1 and dPPJ1 in planta has been developed, using fluorescence HPLC. This method allowed the identification of PPD1 and dPPJ1 in three different plant species. Furthermore, enhanced formation of dPPJ1 in planta was observed after oxidative stress, e.g. treatment with heavy metals or short exposure to low temperatures. Furthermore, it has been shown that dPPJ1 display biological activity in plants as well as in animals. KW - Phytoprostane KW - Prostaglandin-ähnliche Verbindungen in Pflanzen KW - Lipidperoxidation KW - Jasmonate KW - ROS KW - phytoprostanes KW - prostaglandin-like compounds in plants KW - lipid peroxidation KW - jasmonates KW - ROS Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8599 ER - TY - JOUR A1 - Blättner, Sebastian A1 - Das, Sudip A1 - Paprotka, Kerstin A1 - Eilers, Ursula A1 - Krischke, Markus A1 - Kretschmer, Dorothee A1 - Remmele, Christian W. A1 - Dittrich, Marcus A1 - Müller, Tobias A1 - Schuelein-Voelk, Christina A1 - Hertlein, Tobias A1 - Mueller, Martin J. A1 - Huettel, Bruno A1 - Reinhardt, Richard A1 - Ohlsen, Knut A1 - Rudel, Thomas A1 - Fraunholz, Martin J. T1 - Staphylococcus aureus Exploits a Non-ribosomal Cyclic Dipeptide to Modulate Survival within Epithelial Cells and Phagocytes JF - PLoS Pathogens N2 - Community-acquired (CA) Staphylococcus aureus cause various diseases even in healthy individuals. Enhanced virulence of CA-strains is partly attributed to increased production of toxins such as phenol-soluble modulins (PSM). The pathogen is internalized efficiently by mammalian host cells and intracellular S. aureus has recently been shown to contribute to disease. Upon internalization, cytotoxic S. aureus strains can disrupt phagosomal membranes and kill host cells in a PSM-dependent manner. However, PSM are not sufficient for these processes. Here we screened for factors required for intracellular S. aureus virulence. We infected escape reporter host cells with strains from an established transposon mutant library and detected phagosomal escape rates using automated microscopy. We thereby, among other factors, identified a non-ribosomal peptide synthetase (NRPS) to be required for efficient phagosomal escape and intracellular survival of S. aureus as well as induction of host cell death. By genetic complementation as well as supplementation with the synthetic NRPS product, the cyclic dipeptide phevalin, wild-type phenotypes were restored. We further demonstrate that the NRPS is contributing to virulence in a mouse pneumonia model. Together, our data illustrate a hitherto unrecognized function of the S. aureus NRPS and its dipeptide product during S. aureus infection. KW - cell death KW - cytotoxicity KW - Staphylococcus aureus KW - host cells KW - neutrophils KW - macrophages KW - transposable elements KW - epithelial cells Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180380 VL - 12 IS - 9 ER - TY - JOUR A1 - Abdelhafez, Omnia Hesham A1 - Fawzy, Michael Atef A1 - Fahim, John Refaat A1 - Desoukey, Samar Yehia A1 - Krischke, Markus A1 - Mueller, Martin J. A1 - Abdelmohsen, Usama Ramadan T1 - Hepatoprotective potential of Malvaviscus arboreus against carbon tetrachloride-induced liver injury in rats JF - PLoS ONE N2 - Malvaviscus arboreus Cav. is a medicinal plant belonging to family Malvaceae with both ethnomedical and culinary value; however, its phytochemical and biological profiles have been scarcely studied. Accordingly, this work was designed to explore the chemical composition and the hepatoprotective potential of M. arboreus against carbon tetrachloride (CCl\(_4\))-induced hepatotoxicity. The total extract of the aerial parts and its derived fractions (petroleum ether, dichloromethane, ethyl acetate, and aqueous) were orally administered to rats for six consecutive days, followed by injection of CCl\(_4\) (1:1 v/v, in olive oil, 1.5 ml/kg, i.p.) on the next day. Results showed that the ethyl acetate and dichloromethane fractions significantly alleviated liver injury in rats as indicated by the reduced levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), total bilirubin (TB), and malondialdehyde (MDA), along with enhancement of the total antioxidant capacities of their livers, with the maximum effects were recorded by the ethyl acetate fraction. Moreover, the protective actions of both fractions were comparable to those of silymarin (100 mg/kg), and have been also substantiated by histopathological evaluations. On the other hand, liquid chromatography-high resolution electrospray ionization mass spectrometry (LC‒HR‒ESI‒MS) metabolomic profiling of the crude extract of M. arboreus aerial parts showed the presence of a variety of phytochemicals, mostly phenolics, whereas the detailed chemical analysis of the most active fraction (i.e. ethyl acetate) resulted in the isolation and identification of six compounds for the first time in the genus, comprising four phenolic acids; β-resorcylic, caffeic, protocatechuic, and 4-hydroxyphenylacetic acids, in addition to two flavonoids; trifolin and astragalin. Such phenolic principles, together with their probable synergistic antioxidant and liver-protecting properties, seem to contribute to the observed hepatoprotective potential of M. arboreus. KW - high performance liquid chromatography KW - phenols KW - phytochemicals KW - antioxidants KW - metabolomics KW - medicinal plants KW - Egypt KW - xenobiotic metabolism KW - Malvaviscus arboreus Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177243 VL - 13 IS - 8 ER - TY - JOUR A1 - Elmaidomy, Abeer H. A1 - Mohammed, Rabab A1 - Hassan, Hossam M. A1 - Owis, Asmaa I. A1 - Rateb, Mostafa E. A1 - Khanfar, Mohammad A. A1 - Krischke, Markus A1 - Mueller, Martin J. A1 - Abdelmohsen, Usama Ramadan T1 - Metabolomic profiling and cytotoxic tetrahydrofurofuran lignans investigations from Premna odorata Blanco JF - Metabolites N2 - Metabolomic profiling of different Premna odorata Blanco (Lamiaceae) organs, bark, wood, young stems, flowers, and fruits dereplicated 20, 20, 10, 20, and 20 compounds, respectively, using LC–HRESIMS. The identified metabolites (1–34) belonged to different chemical classes, including iridoids, flavones, phenyl ethanoids, and lignans. A phytochemical investigation of P. odorata bark afforded one new tetrahydrofurofuran lignan, 4β-hydroxyasarinin 35, along with fourteen known compounds. The structure of the new compound was confirmed using extensive 1D and 2D NMR, and HRESIMS analyses. A cytotoxic investigation of compounds 35–38 against the HL-60, HT-29, and MCF-7 cancer cell lines, using the MTT assay showed that compound 35 had cytotoxic effects against HL-60 and MCF-7 with IC50 values of 2.7 and 4.2 µg/mL, respectively. A pharmacophore map of compounds 35 showed two hydrogen bond acceptor (HBA) aligning the phenoxy oxygen atoms of benzodioxole moieties, two aromatic ring features vectored on the two phenyl rings, one hydrogen bond donor (HBD) feature aligning the central hydroxyl group and thirteen exclusion spheres which limit the boundaries of sterically inaccessible regions of the target’s active site. KW - Premna KW - lignan KW - metabolomic KW - cytotoxic KW - pharmacophore map Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193187 SN - 2218-1989 VL - 9 IS - 10 ER - TY - JOUR A1 - Youssif, Khayrya A. A1 - Haggag, Eman G. A1 - Elshamy, Ali M. A1 - Rabeh, Mohamed A. A1 - Gabr, Nagwan M. A1 - Seleem, Amany A1 - Salem, M. Alaraby A1 - Hussein, Ahmed S. A1 - Krischke, Markus A1 - Mueller, Martin J. A1 - Ramadan Abdelmohsen, Usama T1 - Anti-Alzheimer potential, metabolomic profiling and molecular docking of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea aqueous extracts JF - PLoS ONE N2 - The green synthesis of silver nanoparticles (SNPs) using plant extracts is an eco-friendly method. It is a single step and offers several advantages such as time reducing, cost-effective and environmental non-toxic. Silver nanoparticles are a type of Noble metal nanoparticles and it has tremendous applications in the field of diagnostics, therapeutics, antimicrobial activity, anticancer and neurodegenerative diseases. In the present work, the aqueous extracts of aerial parts of Lampranthus coccineus and Malephora lutea F. Aizoaceae were successfully used for the synthesis of silver nanoparticles. The formation of silver nanoparticles was early detected by a color change from pale yellow to reddish-brown color and was further confirmed by transmission electron microscope (TEM), UV–visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), and energy-dispersive X-ray diffraction (EDX). The TEM analysis of showed spherical nanoparticles with a mean size between 12.86 nm and 28.19 nm and the UV- visible spectroscopy showed λ\(_{max}\) of 417 nm, which confirms the presence of nanoparticles. The neuroprotective potential of SNPs was evaluated by assessing the antioxidant and cholinesterase inhibitory activity. Metabolomic profiling was performed on methanolic extracts of L. coccineus and M. lutea and resulted in the identification of 12 compounds, then docking was performed to investigate the possible interaction between the identified compounds and human acetylcholinesterase, butyrylcholinesterase, and glutathione transferase receptor, which are associated with the progress of Alzheimer’s disease. Overall our SNPs highlighted its promising potential in terms of anticholinesterase and antioxidant activity as plant-based anti-Alzheimer drug and against oxidative stress. KW - Nanoparticles KW - Silver KW - Alzheimer's disease KW - Glutathione KW - Antioxidants KW - Serine proteases KW - Brain diseases KW - Metabolomics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202696 VL - 14 IS - 11 ER - TY - JOUR A1 - Krauss, Jochen A1 - Vikuk, Veronika A1 - Young, Carolyn A. A1 - Krischke, Markus A1 - Mueller, Martin J. A1 - Baerenfaller, Katja T1 - Epichloë endophyte infection rates and alkaloid content in commercially available grass seed mixtures in Europe JF - Microorganisms N2 - Fungal endophytes of the genus Epichloë live symbiotically in cool season grass species and can produce alkaloids toxic to insects and vertebrates, yet reports of intoxication of grazing animals have been rare in Europe in contrast to overseas. However, due to the beneficial resistance traits observed in Epichloë infected grasses, the inclusion of Epichloë in seed mixtures might become increasingly advantageous. Despite the toxicity of fungal alkaloids, European seed mixtures are rarely tested for Epichloë infection and their infection status is unknown for consumers. In this study, we tested 24 commercially available seed mixtures for their infection rates with Epichloë endophytes and measured the concentrations of the alkaloids ergovaline, lolitrem B, paxilline, and peramine. We detected Epichloë infections in six seed mixtures, and four contained vertebrate and insect toxic alkaloids typical for Epichloë festucae var. lolii infecting Lolium perenne. As Epichloë infected seed mixtures can harm livestock, when infected grasses become dominant in the seeded grasslands, we recommend seed producers to test and communicate Epichloë infection status or avoiding Epichloë infected seed mixtures. KW - Epichloë spp. KW - grass endophytes KW - cool-season grass species KW - infection rates KW - alkaloids KW - toxicity KW - livestock KW - horses KW - Lolium perenne KW - perennial ryegrass Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203323 SN - 2076-2607 VL - 8 IS - 4 ER - TY - JOUR A1 - Krauss, Jochen A1 - Vikuk, Veronika A1 - Young, Carolyn A. A1 - Krischke, Markus A1 - Mueller, Martin J. A1 - Baerenfaller, Katja T1 - Correction: Krauss, J., et al. Epichloë endophyte infection rates and alkaloid content in commercially available grass seed mixtures in Europe. Microorganisms 2020, 8, 498 JF - Microorganisms N2 - No abstract available. KW - Epichloë KW - endophyte Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216254 SN - 2076-2607 VL - 8 IS - 10 ER - TY - JOUR A1 - Thurow, Corinna A1 - Krischke, Markus A1 - Mueller, Martin J. A1 - Gatz, Christiane T1 - Induction of jasmonoyl-isoleucine (JA-Ile)-dependent JASMONATE ZIM-DOMAIN (JAZ) genes in NaCl-treated Arabidopsis thaliana roots can occur at very low JA-Ile levels and in the absence of the JA/JA-Ile transporter JAT1/AtABCG16 JF - Plants N2 - The plant hormone jasmonoyl-isoleucine (JA-Ile) is an important regulator of plant growth and defense in response to various biotic and abiotic stress cues. Under our experimental conditions, JA-Ile levels increased approximately seven-fold in NaCl-treated Arabidopsis thaliana roots. Although these levels were around 1000-fold lower than in wounded leaves, genes of the JA-Ile signaling pathway were induced by a factor of 100 or more. Induction was severely compromised in plants lacking the JA-Ile receptor CORONATINE INSENSITIVE 1 or enzymes required for JA-Ile biosynthesis. To explain efficient gene expression at very low JA-Ile levels, we hypothesized that salt-induced expression of the JA/JA-Ile transporter JAT1/AtABCG16 would lead to increased nuclear levels of JA-Ile. However, mutant plants with different jat1 alleles were similar to wild-type ones with respect to salt-induced gene expression. The mechanism that allows COI1-dependent gene expression at very low JA-Ile levels remains to be elucidated. KW - allene oxide synthase KW - CORONATINE INSENSITIVE 1 KW - jasmonoyl-isoleucine KW - JA/JA-Ile transport protein JAT1 KW - roots KW - salt Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219382 SN - 2223-7747 VL - 9 IS - 12 ER - TY - JOUR A1 - Vikuk, Veronika A1 - Fuchs, Benjamin A1 - Krischke, Markus A1 - Mueller, Martin J. A1 - Rueb, Selina A1 - Krauss, Jochen T1 - Alkaloid Concentrations of Lolium perenne Infected with Epichloë festucae var. lolii with Different Detection Methods—A Re-Evaluation of Intoxication Risk in Germany? JF - Journal of Fungi N2 - Mycotoxins in agriculturally used plants can cause intoxication in animals and can lead to severe financial losses for farmers. The endophytic fungus Epichloë festucae var. lolii living symbiotically within the cool season grass species Lolium perenne can produce vertebrate and invertebrate toxic alkaloids. Hence, an exact quantitation of alkaloid concentrations is essential to determine intoxication risk for animals. Many studies use different methods to detect alkaloid concentrations, which complicates the comparability. In this study, we showed that alkaloid concentrations of individual plants exceeded toxicity thresholds on real world grasslands in Germany, but not on the population level. Alkaloid concentrations on five German grasslands with high alkaloid levels peaked in summer but were also below toxicity thresholds on population level. Furthermore, we showed that alkaloid concentrations follow the same seasonal trend, regardless of whether plant fresh or dry weight was used, in the field and in a common garden study. However, alkaloid concentrations were around three times higher when detected with dry weight. Finally, we showed that alkaloid concentrations can additionally be biased to different alkaloid detection methods. We highlight that toxicity risks should be analyzed using plant dry weight, but concentration trends of fresh weight are reliable. KW - Epichloë KW - Lolium perenne KW - toxicity KW - grasslands KW - HPLC/UPLC methods KW - endophyte KW - plant fresh/dry weight KW - alkaloid detection methods KW - mycotoxins KW - phenology Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213171 SN - 2309-608X VL - 6 IS - 3 ER - TY - JOUR A1 - Ferber, Elena A1 - Gerhards, Julian A1 - Sauer, Miriam A1 - Krischke, Markus A1 - Dittrich, Marcus T. A1 - Müller, Tobias A1 - Berger, Susanne A1 - Fekete, Agnes A1 - Mueller, Martin J. T1 - Chemical Priming by Isothiocyanates Protects Against Intoxication by Products of the Mustard Oil Bomb JF - Frontiers in Plant Science N2 - In Brassicaceae, tissue damage triggers the mustard oil bomb i.e., activates the degradation of glucosinolates by myrosinases leading to a rapid accumulation of isothiocyanates at the site of damage. Isothiocyanates are reactive electrophilic species (RES) known to covalently bind to thiols in proteins and glutathione, a process that is not only toxic to herbivores and microbes but can also cause cell death of healthy plant tissues. Previously, it has been shown that subtoxic isothiocyanate concentrations can induce transcriptional reprogramming in intact plant cells. Glutathione depletion by RES leading to breakdown of the redox potential has been proposed as a central and common RES signal transduction mechanism. Using transcriptome analyses, we show that after exposure of Arabidopsis seedlings (grown in liquid culture) to subtoxic concentrations of sulforaphane hundreds of genes were regulated without depletion of the cellular glutathione pool. Heat shock genes were among the most highly up-regulated genes and this response was found to be dependent on the canonical heat shock factors A1 (HSFA1). HSFA1-deficient plants were more sensitive to isothiocyanates than wild type plants. Moreover, pretreatment of Arabidopsis seedlings with subtoxic concentrations of isothiocyanates increased resistance against exposure to toxic levels of isothiocyanates and, hence, may reduce the autotoxicity of the mustard oil bomb by inducing cell protection mechanisms. KW - autotoxicity KW - heat shock response KW - isothiocyanates KW - mustard oil bomb KW - reactive electrophilic species KW - redox homeostasis KW - sulforaphane Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207104 SN - 1664-462X VL - 11 ER -